EECS 3401 — Al and Logic Prog. — Lecture 15

Adapted from slides of Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

November 11, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 1/26

@ Today: Classical Planning
@ Required reading: Russell & Norvig Chapter 11 (Ch. 10 in 3-rd ed.)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 2/26

Planning as a Search Problem

@ Already understand: traversing the state space from starting state to
goal state

@ Planning is one of the applications of search (This lecture)

@ But there is more to planning! (Next lecture)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15

November 11, 2020 3/26

Planning in general

What is planning? Consider a setup:
@ The world state is described by a Knowledge Base of some kind

@ Actions can update the KB, thus possibly changing the state of the
world

STRIPS, ADL — existing formal languages for that purpose

@ Goal condition is a logical statement (formula)

The the planning problem is the task of finding a sequence of actions
that, when applied to the initial KB, yield an updated KB which
satisfies the goal.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 4/26

Classical Planning

@ STRIPS!: an early and very influential formalism for describing
planning domains

@ PDDL: current, robust formalsm which fixes semantic problems with
STRIPS and adds cool new features

@ "Automated Planning and Scheduling” is a sizable sub-area of Al,
revolves mostly around PDDL and its extensions

1 “Stanford Research Institute Problem Solver”, 1971

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 5/26

STRIPS, briefly

STRIPS:

@ A modest language (compared to FOL) for state
descriptions—operates on propositional variables

@ Describes world in terms of a finite set of True/False facts (prop.
variables, “atoms")

@ A state is given by a subset of the set of all domain atoms. An atom
in this subset is true, not in this set is false

@ Goal state: a set of atoms that we want to be true
@ Operators: transform one state to new state. Defined by:
o A name
e A set of preconditions — atoms that must be true for the action to be
possible
e An add-list — atoms the action makes true
o A delete-list — atoms the action makes false

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 6/26

Planning As Search

This setup is reminiscent of the search problem.
@ The initial KB represents the initial state
@ Each action maps one description of a state to a description of a new
one
@ The goal state is any state described by a KB which entails the goal
statement

November 11, 2020 7/26

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15

B
C
move(b, c)
A
C / C
move(c, b)
A | B A | B

\move(c, table)

AlB|C| — |8

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 8/

@ Search tree is generally quite large
Randomly reconfiguring just 9 blocks takes thousands of CPU seconds

@ The representation suggests some structure: Each action only affects
a small set of facts, actions depend on each other via their
preconditions

@ Planning algorithms are designed to take advantage of the special
nature of the representation

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 9/26

Reachability Analysis

o Let’s consider just one technique: Relaxed Plan heuristics used with
heuristic search

@ ldea: consider what happens if we ignore the delete list of actions

@ This yields a "relaxed problem” that can produce a useful heuristic
estimate

@ In the relaxed problem, actions add new facts, but never delete old
facts

@ Then we can do reachability analysis, which is much simpler than
searching for a solution

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 10 /26

Reachability

Start with the initial state Sy

Alternate between state and action layers

Find all action swhose preconditions are contained in Sg. These
actions comprise the first action layer Ag.

@ The next state layer consists of all of Sy plus the add-lists of all of
the actions of Ag

In general,

A; is the set of actions whose preconditions are contained in S;
Siv1 is S U {AddLISt(A) | Ae A,}

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 11/26

STRIPS Blocks World operators

pickup (X)

Pre: {clear(X), ontable(X), handempty}
Add: {holding(X)}

Del: {clear(X), ontable(X), handemptyl}

putdown (X)

Pre: {holding(X)}

Add: {clear(X), ontable(X), handempty}
Del: {holding(X)}

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 12 /26

STRIPS Blocks World operators

unstack(X,Y)

Pre: {clear(X), on(X,Y), handempty}
Add: {holding(X), clear(Y)}

Del: {clear(X), on(X,Y), handempty}

stack(X,Y)

Pre: {holding(X),clear(Y)}

Add: {on(X,Y), handempty, clear(X)}
Del: {holding(X),clear(Y)}

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020

So: Ao: Sy
on(a,b),
on(a,b), unstack(a,b) on(b,c),
on(b,c), pickup(d) ontable(c),
ontable(c), ontable(d),
ontable(d), clear(a),
clear(a), clear(d),
clear(d), handempty,
holding(a)
hand t ?
ancempty clear(b),

holding(d)

@ﬁ offemBeley
& @\j\j

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 14 /26

51: A12 52:
on(a,b), putdown(a),
on(b,c), putdown(d),
ontable(c), stack(a,b),
ontable(d), stack(a,a),
clear(a), stack(d,b),
clear(d), stack(d,a),
handempty, pickup(d),
holding(a), ..
clear(b), unstack(b,c)
holding(d)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 15 /26

Reachability

@ We continue until the goal G is contained in the state layer, or until
the state layer no longer changes
@ Intuitively,
e The actions at level A; are the actions that could be executed at the
i-th step of some plan
o The facts in level S; are the facts that could be made true after some
i-step plan
@ This is generally false, but not always. More often, this is too
optimistic—good enough for a heuristic.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 16 / 26

Heuristics from Reachability Analysis

@ Grow the levels until the goal is contained in the final state level Sy

o If the state level stops changing and the goal is not present, the goal
is cannot be achieved. (Because the goal is a set of positive facts,
and in STRIPS, all preconditions are positive facts as well.)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 17 /26

Heuristics from Reachability Analysis

o Let CountActions(G, Sk) be a procedure that computes the # of
actions in relaxed plan to reach G

@ Partition G into facts in S,x_71 and elements in S only. These sets are
the previously-achieved (Gpa) and just-achieved (G a) parts of G.

@ Find a minimal set of actions A whose add-lists cover the Gy4.

@ Replace the just-achieved part of G with the preconditions of A: Let
G' = Gpa U Pre(A)

@ Now, return CountActions(G’, Sx_1) + [# of actions needed to
cover G|

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 18 /26

CountActions(G, S2):

So = {f, f, f3} Gpa = {fs, 1} already in S;

Ao = {[fi]a1lfa], [R)a2[fs]} Gya = {fs} newin S
S1={f,h,f 1,1} A= {a3} addsallin Gy

A1 = {[f, fa, fs]as[f] }

S2=1{h,h,f, fa, 15, fc} G' = Gpa U Pre(A) = {fs, fi, b, fy}

Return CountActions(G’, 51)+1
G ={f,f, fe}

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 19 /26

(Now at level S;) CountActions(G’, 51):
So = {f1, h, i3} Gpa = {f,} already in Sy
Ao = {[fi]a1la], [f]az(fs] } Ga={fa,fs} newin S
S1={h,h,f, 1 fs} A={ay,a} addsallin Ga
A1 = {[f, fa, 5] a3 f] }
S2={f,h,ffa 5,15} G" = Gpa U Pre(A) = {f, 2}

Return CountActions(G”,Sp) +

G/:{%aﬁaﬁaﬁl} 2:2

So, in total, CountActions(G,S)=1+2=3

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020

Using the Heuristic

To use CountActions as a heuristic:

@ Build a layered structure from state S that reaches the goal

@ Compute CountActions to see how many actions are required in a
relaxed plan

@ Use this count as our heuristic estimate of the distance of S to the
goal

o (This heuristic tends to work better as a best-first search, i.e., when
the cost of getting to the current state is ignored)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 21/26

Admissibility

@ An optimal-length plan in the relaxed problem (actions have no
delete-lists) will be a lower bound on the optimal length of a plan in
the real problem

@ However, CountActions does not compute the length of the optimal
relaxed plan

@ The choice of which action set to use to achieve G 4 is not
necessarily optimal

@ In fact, it is NP-hard to compute the optimal-length plan even in the
relaxed plan space

@ Thus, CountActions will not be admissible

@ However, empirically, refinements of this heuristic perform very well
on a number of sample planning domains

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 22/26

Closed World Assumption

Classical Planning = no incomplete or uncertain knowledge

The Closed World Assumption underlies Classical Planning both in
knowledge representation and reasoning

The KB is a list of positive ground atomic facts
o CWA:

e If a ground atomic fact is not in our list of “known" facts, its negation
must be true
e The constants mentioned in KB are all the domain objects

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 23/26

State of the Art in Planning

@ There are annual Al planning systems competitions (e.g., IPC)
@ PDDL is the standard language in the area, several dialects

@ Several state of the art (classical) planning systems perform well on
large real-world problems

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 24 /26

Current Research in Planning

@ Classical Planning makes very strong assumptions: complete
information, deterministic actions, static single-agent world

@ Much recent work in planning addresses more general forms of
planning that drop some or all of these assumptions

@ In such cases, a solution may be a branching plan (branching on
observations/action outcomes), a finite state automaton, or a policy

@ Hierarchical planning/abstraction is useful to address large real-world
problems

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 25/26

End of Lecture

@ Next time: Actions, Situations, and GOLOG

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 15 November 11, 2020 26 /26

