
EECS 3401 — AI and Logic Prog. — Lecture 15
Adapted from slides of Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

November 11, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 1 / 26



Today: Classical Planning

Required reading: Russell & Norvig Chapter 11 (Ch. 10 in 3-rd ed.)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 2 / 26



Planning as a Search Problem

Already understand: traversing the state space from starting state to
goal state

Planning is one of the applications of search (This lecture)

But there is more to planning! (Next lecture)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 3 / 26



Planning in general

What is planning? Consider a setup:

The world state is described by a Knowledge Base of some kind

Actions can update the KB, thus possibly changing the state of the
world
STRIPS, ADL — existing formal languages for that purpose

Goal condition is a logical statement (formula)

The the planning problem is the task of finding a sequence of actions
that, when applied to the initial KB, yield an updated KB which
satisfies the goal.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 4 / 26



Classical Planning

STRIPS1: an early and very influential formalism for describing
planning domains

PDDL: current, robust formalsm which fixes semantic problems with
STRIPS and adds cool new features

“Automated Planning and Scheduling” is a sizable sub-area of AI,
revolves mostly around PDDL and its extensions

1“Stanford Research Institute Problem Solver”, 1971
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 5 / 26



STRIPS, briefly

STRIPS:

A modest language (compared to FOL) for state
descriptions—operates on propositional variables

Describes world in terms of a finite set of True/False facts (prop.
variables, “atoms”)

A state is given by a subset of the set of all domain atoms. An atom
in this subset is true, not in this set is false

Goal state: a set of atoms that we want to be true

Operators: transform one state to new state. Defined by:

A name
A set of preconditions — atoms that must be true for the action to be
possible
An add-list — atoms the action makes true
A delete-list — atoms the action makes false

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 6 / 26



Planning As Search

This setup is reminiscent of the search problem.

The initial KB represents the initial state

Each action maps one description of a state to a description of a new
one

The goal state is any state described by a KB which entails the goal
statement

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 7 / 26



Example

A

C

B

A

C

B

A

C

B

A CB

A C

B

move(c , b)

move(b, c)

move(c , table)

move(a, b)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 8 / 26



Problems

Search tree is generally quite large
Randomly reconfiguring just 9 blocks takes thousands of CPU seconds

The representation suggests some structure: Each action only affects
a small set of facts, actions depend on each other via their
preconditions

Planning algorithms are designed to take advantage of the special
nature of the representation

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 9 / 26



Reachability Analysis

Let’s consider just one technique: Relaxed Plan heuristics used with
heuristic search

Idea: consider what happens if we ignore the delete list of actions

This yields a “relaxed problem” that can produce a useful heuristic
estimate

In the relaxed problem, actions add new facts, but never delete old
facts

Then we can do reachability analysis, which is much simpler than
searching for a solution

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 10 / 26



Reachability

Start with the initial state S0

Alternate between state and action layers

Find all action swhose preconditions are contained in S0. These
actions comprise the first action layer A0.

The next state layer consists of all of S0 plus the add-lists of all of
the actions of A0

In general,

Ai is the set of actions whose preconditions are contained in Si
Si+1 is Si ∪ {AddList(A) | A ∈ Ai}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 11 / 26



STRIPS Blocks World operators

pickup(X)

Pre: {clear(X), ontable(X), handempty}

Add: {holding(X)}

Del: {clear(X), ontable(X), handempty}

putdown(X)

Pre: {holding(X)}

Add: {clear(X), ontable(X), handempty}

Del: {holding(X)}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 12 / 26



STRIPS Blocks World operators

unstack(X,Y)

Pre: {clear(X), on(X,Y), handempty}

Add: {holding(X), clear(Y)}

Del: {clear(X), on(X,Y), handempty}

stack(X,Y)

Pre: {holding(X),clear(Y)}

Add: {on(X,Y), handempty, clear(X)}

Del: {holding(X),clear(Y)}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 13 / 26



Example

S0:

on(a,b),

on(b,c),

ontable(c),

ontable(d),

clear(a),

clear(d),

handempty

c
b

a

d

A0:

unstack(a,b)

pickup(d)

S1:

on(a,b),

on(b,c),

ontable(c),

ontable(d),

clear(a),

clear(d),

handempty,

holding(a),

clear(b),

holding(d)

c
b

a

d

a d

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 14 / 26



Example

S1:

on(a,b),

on(b,c),

ontable(c),

ontable(d),

clear(a),

clear(d),

handempty,

holding(a),

clear(b),

holding(d)

A1:

putdown(a),

putdown(d),

stack(a,b),

stack(a,a),

stack(d,b),

stack(d,a),

pickup(d),

...

unstack(b,c)

...

S2:

...

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 15 / 26



Reachability

We continue until the goal G is contained in the state layer, or until
the state layer no longer changes

Intuitively,

The actions at level Ai are the actions that could be executed at the
i-th step of some plan
The facts in level Si are the facts that could be made true after some
i-step plan

This is generally false, but not always. More often, this is too
optimistic—good enough for a heuristic.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 16 / 26



Heuristics from Reachability Analysis

Grow the levels until the goal is contained in the final state level Sk

If the state level stops changing and the goal is not present, the goal
is cannot be achieved. (Because the goal is a set of positive facts,
and in STRIPS, all preconditions are positive facts as well.)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 17 / 26



Heuristics from Reachability Analysis

Let CountActions(G ,Sk) be a procedure that computes the # of
actions in relaxed plan to reach G

Partition G into facts in Sk−1 and elements in Sk only. These sets are
the previously-achieved (GPA) and just-achieved (GJA) parts of G .

Find a minimal set of actions A whose add-lists cover the GJA.

Replace the just-achieved part of G with the preconditions of A: Let
G ′ = GPA ∪ Pre(A)

Now, return CountActions(G ′,Sk−1) + [# of actions needed to
cover GJA]

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 18 / 26



Example

S0 = {f1, f2, f3}
A0 = {[f1]a1[f4], [f2]a2[f5]}
S1 = {f1, f2, f3, f4, f5}
A1 = {[f2, f4, f5]a3[f6]}
S2 = {f1, f2, f3, f4, f5, f6}

G = {f1, f5, f6}

CountActions(G ,S2):

GPA = {f5, f1} already in S1

GJA = {f6} new in S2

A = {a3} adds all in GJA

G ′ = GPA ∪ Pre(A) = {f5, f1, f2, f4}

Return CountActions(G ′,S1)+1

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 19 / 26



Example

(Now at level S1)

S0 = {f1, f2, f3}
A0 = {[f1]a1[f4], [f2]a2[f5]}
S1 = {f1, f2, f3, f4, f5}
A1 = {[f2, f4, f5]a3[f6]}
S2 = {f1, f2, f3, f4, f5, f6}

G ′ = {f5, f1, f2, f4}

CountActions(G ′,S1):

GPA = {f1, f2} already in S0

GJA = {f4, f5} new in S1

A = {a1, a2} adds all in GJA

G ′′ = GPA ∪ Pre(A) = {f1, f2}

Return CountActions(G ′′,S0) +
2 = 2

So, in total, CountActions(G ,S2) = 1 + 2 = 3

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 20 / 26



Using the Heuristic

To use CountActions as a heuristic:

Build a layered structure from state S that reaches the goal

Compute CountActions to see how many actions are required in a
relaxed plan

Use this count as our heuristic estimate of the distance of S to the
goal

(This heuristic tends to work better as a best-first search, i.e., when
the cost of getting to the current state is ignored)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 21 / 26



Admissibility

An optimal-length plan in the relaxed problem (actions have no
delete-lists) will be a lower bound on the optimal length of a plan in
the real problem

However, CountActions does not compute the length of the optimal
relaxed plan

The choice of which action set to use to achieve GJA is not
necessarily optimal

In fact, it is NP-hard to compute the optimal-length plan even in the
relaxed plan space

Thus, CountActions will not be admissible

However, empirically, refinements of this heuristic perform very well
on a number of sample planning domains

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 22 / 26



Closed World Assumption

Classical Planning = no incomplete or uncertain knowledge

The Closed World Assumption underlies Classical Planning both in
knowledge representation and reasoning

The KB is a list of positive ground atomic facts

CWA:

If a ground atomic fact is not in our list of “known” facts, its negation
must be true
The constants mentioned in KB are all the domain objects

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 23 / 26



State of the Art in Planning

There are annual AI planning systems competitions (e.g., IPC)

PDDL is the standard language in the area, several dialects

Several state of the art (classical) planning systems perform well on
large real-world problems

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 24 / 26



Current Research in Planning

Classical Planning makes very strong assumptions: complete
information, deterministic actions, static single-agent world

Much recent work in planning addresses more general forms of
planning that drop some or all of these assumptions

In such cases, a solution may be a branching plan (branching on
observations/action outcomes), a finite state automaton, or a policy

Hierarchical planning/abstraction is useful to address large real-world
problems

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 25 / 26



End of Lecture

Next time: Actions, Situations, and GOLOG

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 15 November 11, 2020 26 / 26


