
EECS 3401 — AI and Logic Prog. — Lecture 14
Adapted from slides of Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

November 9, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 1 / 25

Today: Constraint Satisfaction

Required reading: Russell & Norvig Chapter 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 2 / 25

CSP, Formally

A Constraint Satisfaction Problem (CSP) consists of:

A set of variables V1, . . . ,Vn

For each variable Vi , a domain of possible values Dom[Vi]

A set of constraints C1, . . . ,Cm

Each variable Vi can be assigned any value from Dom[Vi]

Each constraint C has
A scope: a subset of the problem’s variables which it concerns
e.g., V1,V2,V4

A boolean function that maps assignments to these variables to
True/False, e.g.,
C (V1 = a,V2 = b,V4 = c) = True
C (V1 = b,V2 = c ,V4 = c) = False

A solution to a CSP is an assignment of a value to all of the variables
such that every constraint is satisfied.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 3 / 25

Example: Sudoku

Variables: V1,1,V1,2, . . . ,V9,9

Domains:
Dom[Vi ,j] = {1..9} for empty cells,
Dom[Vi ,j] = {k} for each cell pre-filled with some k

Row constraints:
CR1(V1,1,V1,2, . . . ,V1,9)
CR2(V2,1,V2,2, . . . ,V2,9)
. . .
CR9(V9,1,V9,2, . . . ,V9,9)

Column constraints:
CC1(V1,1,V2,1, . . . ,V9,1)
etc.

Sub-square constraints:
CSS1(V1,1,V1,2,V1,3,V2,1,V2,2,V2,3,V3,1,V3,2,V3,3)
etc.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 4 / 25

Example: Sudoku

Each of these constraints is over 9 variables, and they are all the same
constraint: all values must be unique

Such constraints are often called the ALL-DIFF constraints

Thus, Sudoku has 3 x 9 ALL-DIFF constraints, one over each set of
variables in the same column, one over each set of variables in the
same row, and one over each set of variables in the same sub-square

Note: An ALL-DIFF constraint over k variables can be equivalently
expressed by k-choose-2 not-equal constraints over each pair of these
variables.
Let NEQ be a not-equal constraint; then
CSS1(V1,1,V1,2,V1,3,V2,1,V2,2,V2,3,V3,1,V3,2,V3,3) =
NEQ(V1,1,V1,2), NEQ(V1,1,V1,3), . . . , NEQ(V3,2,V3,3)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 5 / 25

Example: Exam Scheduling

Constraints:

For all pairs of finals i , j such that there is a student taking both:

NEQ(Ti ,Tj)

For all pairs of finals i , j :

C (Ti ,Tj , Si ,Sj),

satisfied by any set of assignments in which Ti 6= Tj or Si 6= Sj
falsified by any set of assignments in which Ti = Tj as well as Si = Sj

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 6 / 25

Solving CSPs

CSPs can be solved by a specialized version of the depth-first search

Key intuitions:

We can build up to a solution by searching through the space of partial
assignments
Order in which we assign the variables does not matter—eventually,
they all have to be assigned
If, during the process of building up a solution, we falsify a constraint,
we can immediately reject all possible ways of extending the current
partial assignment

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 7 / 25

Backtracking Search

The following backtracking search algorithm is based on these ideas:

BT(Level):

If all variables assigned:

return all values

V := PickUnassignedVariable()

Variable[Level] := V

Assigned[V] := true

for each member d of Domain(V):

Value[V] := d

OK := TRUE

for each constraint C such that V is a variable of C

and all other variables of C are assigned:

if C is not satisfied by the current set of assignments:

OK := FALSE

if(OK):

BT(Level+1)

return

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 8 / 25

Solving CSPs

The algorithm searches a tree of partial assignments

Root {}

Vi = a Vi = b Vi = c

Vj = 1 Vj = 2
subtree

root has an empty set

search stops descending
if assignment violates

a constraint

of assignments

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 9 / 25

Backtracking Search

Heuristics are used to determine which variable to assign next
In pseudocode above, PickUnassignedVariable()

The choice can vary from branch to branch
For example, under the assignment V1 = a, we might choose to assign V4 next,

while under V1 = b, we might choose to assign V5 next

This dynamically-chosen variable ordering has a tremendous impact
on performance

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 10 / 25

Example

The N-Queens Problem:
Place N Queens on an N × N chess board so that no Queen can attack
any other Queen

Variables: Vi (1 ≤ i ≤ N), one per row (why?)
Value of Vi defines the column on row i where a Queen is placed

Constraints:

Vi 6= Vj for all i 6= j (can’t put two Queens on same column)
|Vi − Vj | 6= i − j (diagonal constraint)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 11 / 25

Example: 4× 4 Queens

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 12 / 25

Example: 4× 4 Queens

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 13 / 25

Example: 4× 4 Queens

Solution!

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 14 / 25

Backtracking Search

Unary Constraints: over one variable
C(X) : X = 2, C(Y) : Y > 5

Binary Constraints: over two variables
C(X ,Y) : X + Y < 6
Can be represented by a constraint graph, where nodes are variables and arcs are
the constraints. E.g., 4-Queens:

Q1 Q2

Q4Q3

Higher-Order Constraints: over 3 or more variables
Can convert any constraint into a set of binary constraints (may need some

auxiliary variables)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 15 / 25

Problems with plain backtracking

1 2 3

4 5 6

7

8

9

The cell 3,3 has no possible value. But in the backtracking search we
don’t detect this until all variables of a row/column/sub-square constraint
are assigned

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 16 / 25

Constraint Propagation

Constraint propagation refers to the technique of looking ahead in the
search at the as-yet unassigned variables

Try to detect if any “obvious” failures have occurred

“Obvious” refers to things we can test/detect efficiently

Even if we don’t detect an obvious failure, we might be able to
eliminate some possible part of the future search

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 17 / 25

Constraint Propagation

Propagation has to be applied during search, potentially at every
node of the search tree

If propagation is slow, this can slow the search down to the point
where using propagation actually slows search down!

There is always a trade-off between searching fewer nodes in the
search and having a higher node-per-second processing rate

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 18 / 25

Forward Checking

Forward checking is an extension of backtracking search that employs
a “modest” amount of propagation (lookahead)

When a variable is instantiated, we check all constraints that have
only one uninstantiated variable remaining

For that uninstantiated variable, we check all of its values, pruning
those values that violate the constraint

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 19 / 25

Forward Checking

FCCheck(C, x): // C is constraint, x its only uninst. var.

for d := each member of CurDom[x]

if making x = d together with previous assignments

to variables in scope C falsifies C:

remove d from CurDom[V]

if CurDom[V] = {} then return DWO (Domain Wipe Out)

return ok

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 20 / 25

Forward Checking

FC(Level):

If all variables are assigned:

return Value of each Variable // as before

V := PickAnUnassignedVariable()

Variable[Level] := V

Assigned[V] := TRUE

for d := each member of CurDom(V)

Value[V] := d

for each constraint C over V that has one

unassigned variable in its scope X:

val := FCCheck(C,X)

if(val != DWO)

FC(Level+1)

RestoreAllValuesPrunedByFCCheck()

return

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 21 / 25

Forward Checking Example: 4-Queens

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 22 / 25

Restoring Values

After we backtrack from current assignment (in the for-loop), we
must restore the values that were pruned as a result of that
assignment

Some bookkeeping needs to be done, as we must remember which
values were pruned by which assignment

FC also gives for free a very powerful heuristic:

Always branch on a variable with the smallest remaining values
(smallest CurDom)
If a variable has only one value left, that value is forced, so we should
propagate its consequences immediately
This heuristic tends to produce skinny trees at the top. This means
that more variables can be instantiated with fewer nodes searched, and
thus more constraint propagation/DWO failures occur with less work

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 23 / 25

Empirically

FC often about 100 faster than BT

FC with MRV (minimum remaining values) often 10000 times faster

But on some problems the speed up can be much greater
Converts problems that are essentially not solvable to problems that are solvable

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 24 / 25

End of Lecture

Next time: Planning as Search

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 14 November 9, 2020 25 / 25

