
EECS 3401 — AI and Logic Prog. — Lecture 13
Adapted from slides of Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

November 4, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 1 / 25



Today: Search Algorithms and Constraint Satisfaction

Required reading: Russell & Norvig Chapters 3.6, 4.1, 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 2 / 25



Recap from last time

Searching in a state space for a sequence of transitions taking us from
initial state to goal

Frontier: a list of nodes to expand, at start contains just the initial
state

Choice of which node to expand defines the search strategy

Formalized as: sort frontier by some criterion and always choose the
first node

Blind (uninformed) searches: BFS, DFS, IDS, UC (pros and cons)

Informed search: guided by a heuristic function (domain-specific)

Heuristics: admissible, monotone

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 3 / 25



Recap: Heuristics and A*

A* Search: sort frontier by f -values (increasing)

f (n) = g(n) + h(n)

where g(n) is the actual cost to get to n.

h is admissible if h(n) ≤ h∗(n) for all n

h is monotone if h(n) ≤ c(n→ n′) + h(n′) for all n, n′, c

Every monotone h is admissible

Monotonicity makes A* amazing (relatively)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 4 / 25



A* search with monotonicity

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 5 / 25



Admissibility without monotonicity

What happens to the properties of A* when h is admissible but not
monotonic?

Time and space complexity remain the same

Completeness still holds

Without cycle checking, optimality still holds, but for a different
reason
Assume the goal path 〈S , . . . ,G〉 found by A* has cost g(G) greater than the
optimal cost C∗. Then, there must exist a node n in the optimal path that is still
in the frontier. So:

f (n) = g(n) + h(n) ≤ g(n) + h∗(n) = C∗ < f (G)

If the f -value of n is smaller than that of the goal, then n would’ve been selected

for expansion before G — a contradiction.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 6 / 25



Admissibility without monotonicity

No longer guaranteed to get an optimal path to a node on first visit.

Cycle checking, as defined previously, will not preserve optimality

To fix this, must remember cost of previous path. If new path is
cheaper, must explore again.

Monotonic contours no longer exist

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 7 / 25



Building Heuristics

How to come up with heuristic functions?

A good approach: simplify the problem, let h(n) be the cost of
reaching the goal in the simplified version

Example: 8-Puzzle
In the original problem, can move a tile from square A to B if A is
adjacent to B and B is empty.

Can relax this in several ways:
1 Ignore whether B is empty
2 Ignore whether A is adjacent to B
3 Ignore all preconditions on actions

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 8 / 25



Building Heuristics: Relaxing the Problem

“Ignore all preconditions on actions” — known as the misplaced
tiles heuristic

To solve the puzzle, need to move each tile in its final position
Number of required moves = number of misplaced tiles
Let h(n) = (# of misplaced tiles). Clearly, this underestimates the
actual cost

“Ignore whether B is empty” — known as the manhattan distance
heuristic

To solve the puzzle, need to slide each tile (in sequence of vertical or
horizontal steps) to its proper place (different for each tile)
Number of required moves =

∑
t∈Tiles manhattan distance(t)

Let h(n) =
∑

t∈Tiles manhattan distance(t). This also underestimates
the actual cost

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 9 / 25



Building Heuristice: Relaxing the Problem

The optimal cost to nodes in the relaxed problem is an admissible
heuristic for the original problem

Proof: The optimal solution in the original problem is also a solution
for the relaxed problem. Therefore, it must be at least as expensive as
the optimal solution in the relaxed problem.

Real example: solving the 8-Puzzle using IDS, A*+misplaced, and
A*+manhattan (average total nodes expanded)

Depth IDS A*+mispl. A*+manh.

10 47127 93 39
14 3473941 539 113
24 — 39135 1641

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 10 / 25



Building Heuristice: Relaxing the Problem

Does manhattan always expand fewer nodes than misplaced?

Yes. hmispl(n) ≤ hmanh(n). We say that hmanh “dominates” hmispl .

Among several admissible heuristics, the one with the highest
value is the fastest.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 11 / 25



Building Heuristice: Pattern Databases

Admissible heuristics can also be derived from solutions to
subproblems

Each state is mapped into a partial specification

Example: in the 15-Puzzle, assume only the position of some specific
tiles matters

By searching backwards from these goal states, we can compute the distance of any

configuration of these tiles to their goal locations. We are ignoring the identity of the

other tiles, thus underestimating the effort in the general case.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 12 / 25



Building Heuristice: Pattern Databases

These configurations are stored in a database, along with the number
of moves required to move the tiles into place

The maximum number of moves taken over all of the databases can
be used as a heuristic

In the 15-Puzzle:

The “fringe” database yields about 300-fold decrease in the search tree
size
The “corner” database yields about a 400-fold decrease

Can also generate a database of disjoint patterns (mutually
non-contradictory), so that the number of moves can be added rather
than taking the maximum. This gives about a 10000-fold decrease
compared to hmanh.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 13 / 25



Assignment 2

To be posted by Friday

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 14 / 25



Local Search

So far, we were concerned with findint a path to the goal

For many problems, we don’t care for the path—only want to find a
goal state

Examples: scheduling, IC layout, network optimization, etc.

Local search algorithms operate using a single current state and
generally move to neighbours of that state

There is an objective function that tells the value of each state. The
goal is defined as the state with the highest value (global maximum)

Algorithms like Hill Climbing try to move to a neighbour with the
highest value

Danger of being stuck in local maximum. To deal with that, some
degree of random exploration is added

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 15 / 25



Local Search Algorithms

Simulated Annealing: instead of the best available move, take a
random move and if it improves the situation then always accept,
otherwise accept with a probability < 1. Progressively decrease the
probability of accepting such moves.

Local Beam Search: like a parallel version of Hill Climbing. Keeps
K states and at each iteration chooses the K best neighbours (so
information is shared between the parallel threads). Also stochastic
version.

Genetic Algorithms: similar to Stochastic Local Beam Search, but
mainly use crossover operation to generate new nodes. This swaps
feature values between the parent nodes to obtain children. This gives
a hierarchical flavor to the search: chunks of solutions get combined.
Choice of state representation becomes very important. Has had wide
impact, but not clear if/when better than other approaches.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 16 / 25



Constraint Satisfaction Problems

The search algorithms we discussed so far had no knowledge of the
state representation (black box)

Couldn’t take advantage of domain-specific information

CSP are a special class of search problems with a uniform and
simple state representation

This allows to design more efficient algorithms

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 17 / 25



Constraint Satisfaction Problems

Many problems can be represented as a search for a vector of feature
values

k-features: variables
Each feature has a value from some domain
Example: height = {short, average, tall},
weight = {light, average, heavy}

In such problems, the task is to search for a set of values for the
features (variables) so that the values satisfy some given conditions
(constraints)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 18 / 25



Constraint Satisfaction Problems

Sudoku

81 variables: 9 by 9 grid, each cell needs a value

Values: a fixed value for those cells that are already filled in, some
value from the set {1, 2, 3, 4, 5, 6, 7, 8, 9} for each of the empty cells

Solution: a value for each cell satisfying the constraints:

No cell in the same column can have the same value
No cell in the same row can have the same value
No cell in the same sub-square can have the same value

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 19 / 25



Constraint Satisfaction Problems

Scheduling
Want to schedule a time and a space for each final exam, so that

no student is scheduled to take more than one final exam at any one
time

The space allocated has to be available at the time chosen

The space has to be large enough to accommodate all of the students
taking the exam

Variables:

T1, . . . ,Tm: each Ti represents the scheduled time for the i-th final

(Assume domains are fixed to something like
{MonAM,MonPM, . . . ,FriPM})
S1, . . . ,Sm: each Si is the space variable for the i-th final

(Domain of Si is the set of all rooms big enough to hold the i-th final)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 20 / 25



Constraint Satisfaction Problems

Want to find an assignment of values to each variable, subject to the
constraints:

For all pairs of finals i , j , such that there is a student taking both,
want Ti 6= Tj

For all pairs of finals i , j , want to have either Ti 6= Tj or Si 6= Sj .

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 21 / 25



CSP, Formally

A Constraint Satisfaction Problem (CSP) consists of:

A set of variables V1, . . . ,Vn

For each variable Vi , a domain of possible values Dom[Vi ]

A set of constraints C1, . . . ,Cm

Each variable Vi can be assigned any value from Dom[Vi ]

Each constraint C has
A scope: a subset of the problem’s variables which it concerns
e.g., V1,V2,V4

A boolean function that maps assignments to these variables to
True/False, e.g.,
C (V1 = a,V2 = b,V4 = c) = True
C (V1 = b,V2 = c ,V4 = c) = False

A solution to a CSP is an assignment of a value to all of the variables
such that every constraint is satisfied.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 22 / 25



Example: Sudoku

Variables: V1,1,V1,2, . . . ,V9,9

Domains:
Dom[Vi ,j ] = {1..9} for empty cells,
Dom[Vi ,j ] = {k} for each cell pre-filled with some k

Row constraints:
CR1(V1,1,V1,2, . . . ,V1,9)
CR2(V2,1,V2,2, . . . ,V2,9)
. . .
CR9(V9,1,V9,2, . . . ,V9,9)

Column constraints:
CC1(V1,1,V2,1, . . . ,V9,1)
etc.

Sub-square constraints:
CSS1(V1,1,V1,2,V1,3,V2,1,V2,2,V2,3,V3,1,V3,2,V3,3)
etc.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 23 / 25



Example: Sudoku

Each of these constraints is over 9 variables, and they are all the same
constraint: all values must be unique

Such constraints are often called the ALL-DIFF constraints

Thus, Sudoku has 3 x 9 ALL-DIFF constraints, one over each set of
variables in the same column, one over each set of variables in the
same row, and one over each set of variables in the same sub-square

Note: An ALL-DIFF constraint over k variables can be equivalently
expressed by k-choose-2 not-equal constraints over each pair of these
variables.
Let NEQ be a not-equal constraint; then
CSS1(V1,1,V1,2,V1,3,V2,1,V2,2,V2,3,V3,1,V3,2,V3,3) =
NEQ(V1,1,V1,2), NEQ(V1,1,V1,3), . . . , NEQ(V3,2,V3,3)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 24 / 25



End of Lecture

Next time: Solving CSPs

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 13 November 4, 2020 25 / 25


