
EECS 3401 — AI and Logic Prog. — Lecture 12
Adapted from slides of Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

November 2, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 1 / 29



Today: Search Algorithms Continued

Required reading: Russell & Norvig Chapters 3.1–3.6, 4.1

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 2 / 29



Depth-Limited Search

Breadth-first search has computational problems (esp. space).
Depth-first can run off down a very long (infinite) path.

Depth-Limited Search
Perform DFS but only to a pre-specified depth limit L
No node on a path that is more than L steps from the initial state is
placed on the Frontier
We truncate the search by looking only at paths of length L or less

Infinite-length paths are no longer a problem!

But will only find a solution if a solution of length ≤ L exists

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 3 / 29



Depth-Limited Search

DLS(Frontier, Successors, Goal?)

If Frontier is empty:

return Failure

Curr := select state from Frontier

If Goal?(Curr):

return Curr

If Depth(Curr) < L:

NewFrontier := (Frontier - {Curr}) + Successors(Curr)

Else:

NewFrontier := Frontier - {Curr}

CutoffOccurred := True

return DLS(NewFrontier, Successors, Goal?)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 4 / 29



Iterative Deepening Search

Take the idea of DLS one step further

Starting at depth limit L = 0, we iteratively increase the depth limit,
performing a depth-limited search for each depth limit

Stop if no solution is found or if the depth limited search failed
without cutting off any nodes becayse of the depth limit

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 5 / 29



Iterative Deepening Search: Example

0

1 2

3 3 42

43 4 5 4 5 5 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 6 / 29



Iterative Deepening Search Properties

Completeness

Yes, if solution of length d exists, it will be found when L = d

Time Complexity

At first glance, looks bad because nodes are expanded many times

(d + 1)b0 + db1 + (d − 1)b2 + . . .+ bd = O(bd)
Root expanded d + 1 times, level 1 nodes expanded d times, etc.

Example: b = 4, d = 10

11 · 40 + 10 · 41 + 9 · 42 + . . .+ 2 · 49 = 815555
410 = 1048576
Most nodes lie on the bottom layer
In fact, IDS can be more efficient than breadth-first search: nodes at
limit are not expanded. BFS must expand all nodes until it expands a
goal node.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 7 / 29



Iterative Deepening Search Properties

Space Complexity

O(bd) — still linear

Optimality

Will find shortest-length solution (which is optimal if costs are
uniform)

If costs are not uniform, we can use a “cost” bound instead

Only expand paths of cost less than the cost bound
Keep track of the minimum cost unexpanded path in each depth-first
iteration, increase the cost bound to this on the next iteration
This can be very expensive. Need as many iterations of the search as
there are distinct path costs

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 8 / 29



A Note on Cycle Checking

Idea: Keep track of all states previously expanded during the search

When we expand node nk to obtain child c , ensure c is not equal to
any previously expanded state

This is known as cycle checking or multiple path checking

Why can’t we utilize this technique with DFS? — what happens to
space complexity?

Thus, only useful with BFS, which is already bad in terms of space
complexity

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 9 / 29



Heuristic Search

In uninformed search, we don’t try to evaluate which of the nodes on
the frontier are the most promising. We never look-ahead to the goal

Even with uniform-cost search, we always expand the cheapest path
regardless of what and where the goal is.

Often, we have some other knowledge about the merit of nodes, e.g.,
going the wrong direction in Romania

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 10 / 29



Heuristic Search

Different notions of merit

If we are concerned about the cost of the solution, we might want a
notion of merit of how costly it is to get to the goal from that search
node

If we are concerned about minimizing computation in search, we
might want a notion of ease in finding the ggoal from that search
node

We will focus on the cost of solution notion of merit

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 11 / 29



Heuristic Search

The idea is to develop a domain-specific heuristic function h(n)

h(n) guesses the cost of getting to the goal from node n

There are different ways of guessing this cost in different domains.
That is, heuristics are domain-specific

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 12 / 29



Heuristic Search

Convention: If h(n1) < h(n2), this means that we guess that it is
cheaper to get to the goal from n1 than from n2

We require that h(n) = 0 for every node n that satisfies the goal.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 13 / 29



Using only h(n) — Greedy best-first search

Use h(n) to rank the nodes on open and always expand the node with
lowest h-value

We are greedily trying to achieve a low-cost solution

However, this method ignores the cost of getting to n, so it ca be
lead astray exploring nodes that cost a lot to get to but seem to be
close to the goal

S
n1

n2

Goal

n3

10

10

10

100

100

h(n3) = 50
h(n1) = 200

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 14 / 29



A* Search

Take into account the cost of getting to the node as well as our
estimate of the cost of getting to the goal from n

Define: f (n) = g(n) + h(n), where

g(n) is the cost of the path to node n
h(n) is the heuristic estimate of the cost of getting to a goal node from
node n

Always expand the node with lowest f -value on the frontier

The f -value is an estimate of the cost of getting to the goal via this
node (path)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 15 / 29



Conditions on h(n)

We want to analyze the behaviour of the resultant search

Completeness, time, space, optimality?

To obtain such results, we must put some further conditions on the
heuristic function h(n) and the search space

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 16 / 29



Conditions on h(n): Admissibility

Assume as usual that c(n1 → n2) ≥ ε > 0 — the cost of any
transition is greater than zero and can’t be arbitrarily small

Let h∗(n) be the cost of an optimal path fron n to a goal node (∞ if
there is no path)

A heuristic h is admissible if it satisfies the condition

h(n) ≤ h∗(n).

That is, an admissible h always underestimates the true cost, never
overestimates.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 17 / 29



Consistency / monotonicity

A heuristic h is monotone (consistent) if it satisfies the trangle
inequality for all nodes n1, n2:

h(n1) ≤ c(n1 → n2) + h(n2).

Note that there might be multiple transitions (action) from n1 to n2,
and the inequality must hold for all of them

This is a stronger condition than admissibility. Monotonicity implies
admissibility.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 18 / 29



Intuition behind admissibility

h(n) ≤ h∗(n) means that the search won’t miss any promising paths

If it really is cheap to get to a goal via n (i.e., both g(n) and h∗(n)
are low), then f (n) = g(n) + h(n) will also be low, and the search
won’t ignore n in favour of more expensive options

This can be formalized to show that admissibility implies optimality

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 19 / 29



Intuition behind monotonicity

h(n1) ≤ c(n1 → n2) + h(n2)

This says something similar, but in addition one won’t be “locally”
mislead — see example

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 20 / 29



Example: admissible but non-monotonic

S

n1

n3

n2

n4

Goal

200 100

200 100

100200

h(n2) = 200

h(n4) = 50h(n3) = 50

h(n1) = 50

{S} ⇒ {n1[200 + 50 = 250], n2[200 + 100 = 300]}
⇒ {n2[200 + 100 = 300], n3[400 + 50 = 450]}
⇒ {n4[200 + 50 = 250], n3[400 + 50 = 450]}
⇒ {Goal [300 + 0 = 300], n3[400 + 50 = 450]}

We do find the optimal path as the heuristic is still admissible, but we are mislead into

ignoring n2 until after we expand n1
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 21 / 29



Monotonicity implies admissibility

If h(n1) ≤ c(n1 → n2) + h(n2) then h(n) ≤ h∗(n)

Proof by induction on the number of steps to a goal node M

(Base case) If n is a goal node, then h(n) = 0 = h∗(n), so
h(n) ≤ h∗(n)

(Induction step) Assume h(nk) ≤ h∗(nk) if number of steps to goal at
nk is at most K . Show that the proposition must hold for nodes nk+1

where number of steps to goal is K + 1:

Let nk be the next node along a shortest path from nk+1 to goal
Since h is monotone, have h(nk+1) ≤ c(nk+1 → nk) + h(nk)
By ind. hypothesis, h(nk) ≤ h∗(nk)
So h(nk+1) ≤ c(nk+1 → nk) + h∗(nk)
Thus, h(nk+1) ≤ h∗(nk+1)

If goal is unreachable from a node n, then h∗(n) =∞ and the result
trivially holds.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 22 / 29



Consequences of monotonicity

1. The f -values of nodes along a path must be non-decreasing

I.e., If path is 〈S → n1 → n2 → . . .→ nk〉, we claim that
f (ni ) ≤ f (ni+1)

Proof:

f (ni ) = c(Start → . . .→ ni ) + h(ni )

≤ c(Start → . . .→ ni ) + c(ni → ni+1) + h(ni+1)

= c(Start → . . .→ ni → ni+1) + h(ni+1)

= g(ni+1) + h(ni+1)

= f (ni+1)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 23 / 29



Consequences of monotonicity

2. If n2 is expanded after n1, then f (n1) ≤ f (n2)

Proof:

If n2 was on the frontier when n1 was expanded, then f (n1) ≤ f (n2),
because otherwise we would’ve selected n2 to expand
If n2 was added to the frontier after n1’s expansion, then let n be an
ancestor of n2 that was present when n1 was being expanded (this
could be n1 itself). We have f (n1) ≤ f (n) since A* chose n1 rather
than n. Also, since n is along the apth to n2, by the previous property,
we have f (n) ≤ f (n2). Thus, we get f (n1) ≤ f (n2).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 24 / 29



Consequences of monotonicity

3. When n is expanded, every path with a lower f -value has already
been expanded

Assume by contradiction that there exists a path
〈Start, . . . , ni−1, ni , ni+1, . . . , nk〉 with f (nk) < fn and ni is its last
expanded node.

Then ni+1 must be on the frontier while n is expanded.
(a) By (1), f (ni+1) ≤ f (nk) since they lie along the same path
(b) Since f (nk) < f (n), we get f (ni+1) < f (n)
(c) By (2), f (n) ≤ f (ni+1) since n is expanded before ni+1

Contradiction in last two points.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 25 / 29



Consequences of monotonicity

4. With a monotone heuristic, the first time A* expands a state, it
has found the minimum cost path to that state
Proof:

Let Path1 be 〈Start, n0, . . . , nk , n〉 be the first path to n found.
Then f (Path1) = c(Path1) + h(n).

Let Path2 be 〈Start,m0, . . . ,mj , n〉 be the another path to n found
later. Then f (Path2) = c(Path2) + h(n).

By property (3), f (Path1) ≤ f (Path2)

Hence, c(Path1) ≤ c(Path2)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 26 / 29



Consequences of monotonicity

Completeness

Yes
Consider a least-cost path to goal: Solution = 〈Start, n0, . . . ,Goal〉
with cost c(Solution)
Since each action has a cost ≥ ε > 0, there are only a finite number
of nodes (paths) that have cost ≤ c(Solution)
All of these paths myst be explored before any path of cost
> c(Solution)
So eventually Solution, or some equal-cost path to a goal must be
expanded

Time and Space Complexity

When h(n) = 0 for all n, h is monotone, and A* becomes
uniform-cost search.
It can be shown that when h(n) > 0 for some n, the number of nodes
expanded can be no larger than uniform-cost
Thus, same worst-case bounds as uniform-cost apply

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 27 / 29



Consequences of monotonicity

Optimality

Yes, by last property, the first path to a goal node must be optimal

Cycle Checking

If we do cycle checking, it is still optimal. Due to last property, we
need to keep only the first path to a node, rejecting all subsequent
paths

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 28 / 29



End of Lecture

Next time: Heuristic Search continued

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 12 November 2, 2020 29 / 29


