EECS 3401 — Al and Logic Prog. — Lecture 12

Adapted from slides of Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

November 2, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 1/29

o Today: Search Algorithms Continued
@ Required reading: Russell & Norvig Chapters 3.1-3.6, 4.1

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 2/29

Depth-Limited Search

@ Breadth-first search has computational problems (esp. space).
Depth-first can run off down a very long (infinite) path.

o Depth-Limited Search
e Perform DFS but only to a pre-specified depth limit L
e No node on a path that is more than L steps from the initial state is
placed on the Frontier
o We truncate the search by looking only at paths of length L or less
@ Infinite-length paths are no longer a problem!
@ But will only find a solution if a solution of length < L exists

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 3/29

Depth-Limited Search

DLS(Frontier, Successors, Goal?)
If Frontier is empty:
return Failure
Curr := select state from Frontier
If Goal?(Curr):
return Curr
If Depth(Curr) <

—

NewFrontier := (Frontier - {Curr}) + Successors(Curr)
Else:

NewFrontier := Frontier - {Curr}

CutoffOccurred := True

return DLS(NewFrontier, Successors, Goal?)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 4/29

lterative Deepening Search

o Take the idea of DLS one step further

@ Starting at depth limit L = 0, we iteratively increase the depth limit,
performing a depth-limited search for each depth limit

@ Stop if no solution is found or if the depth limited search failed
without cutting off any nodes becayse of the depth limit

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 5/29

Iterative Deepening Search: Example

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 6/29

Iterative Deepening Search Properties

Completeness

@ Yes, if solution of length d exists, it will be found when L = d

Time Complexity
o At first glance, looks bad because nodes are expanded many times
o (d+ 1) +dbt+ (d —1)b? + ...+ b9 = O(b%)
Root expanded d + 1 times, level 1 nodes expanded d times, etc.
o Example: b=4,d =10
11-4°4+10-4'+9-424 .. 4249 = 815555
410 — 1048576
Most nodes lie on the bottom layer
In fact, IDS can be more efficient than breadth-first search: nodes at

limit are not expanded. BFS must expand all nodes until it expands a
goal node.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 7/29

Iterative Deepening Search Properties

Space Complexity
e O(bd) — still linear

Optimality
e Will find shortest-length solution (which is optimal if costs are
uniform)
@ If costs are not uniform, we can use a “cost” bound instead

e Only expand paths of cost less than the cost bound

o Keep track of the minimum cost unexpanded path in each depth-first
iteration, increase the cost bound to this on the next iteration

e This can be very expensive. Need as many iterations of the search as
there are distinct path costs

November 2, 2020 8/29

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12

A Note on Cycle Checking

Idea: Keep track of all states previously expanded during the search

When we expand node ny to obtain child ¢, ensure ¢ is not equal to
any previously expanded state

This is known as cycle checking or multiple path checking

Why can't we utilize this technique with DFS? — what happens to
space complexity?

Thus, only useful with BFS, which is already bad in terms of space
complexity

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 9/29

Heuristic Search

@ In uninformed search, we don't try to evaluate which of the nodes on
the frontier are the most promising. We never look-ahead to the goal

@ Even with uniform-cost search, we always expand the cheapest path
regardless of what and where the goal is.

o Often, we have some other knowledge about the merit of nodes, e.g.,
going the wrong direction in Romania

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 10 /29

Heuristic Search

Different notions of merit
@ If we are concerned about the cost of the solution, we might want a
notion of merit of how costly it is to get to the goal from that search
node
@ If we are concerned about minimizing computation in search, we
might want a notion of ease in finding the ggoal from that search
node

@ We will focus on the cost of solution notion of merit

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 11/29

Heuristic Search

@ The idea is to develop a domain-specific heuristic function h(n)
@ h(n) guesses the cost of getting to the goal from node n

@ There are different ways of guessing this cost in different domains.
That is, heuristics are domain-specific

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 12/29

Heuristic Search

e Convention: If h(n1) < h(nz), this means that we guess that it is
cheaper to get to the goal from n;y than from ns

e We require that h(n) = 0 for every node n that satisfies the goal.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 13 /29

Using only h(n) — Greedy best-first search

@ Use h(n) to rank the nodes on open and always expand the node with
lowest h-value

@ We are greedily trying to achieve a low-cost solution

@ However, this method ignores the cost of getting to n, so it ca be
lead astray exploring nodes that cost a lot to get to but seem to be
close to the goal

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 14 /29

@ Take into account the cost of getting to the node as well as our
estimate of the cost of getting to the goal from n
o Define: f(n) = g(n) + h(n), where
o g(n) is the cost of the path to node n

o h(n) is the heuristic estimate of the cost of getting to a goal node from
node n

o Always expand the node with lowest f-value on the frontier

@ The f-value is an estimate of the cost of getting to the goal via this
node (path)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 15 /29

Conditions on h(n)

@ We want to analyze the behaviour of the resultant search
@ Completeness, time, space, optimality?

@ To obtain such results, we must put some further conditions on the
heuristic function h(n) and the search space

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12

November 2, 2020 16 /29

Conditions on h(n): Admissibility

@ Assume as usual that c¢(n; — n2) > € > 0 — the cost of any
transition is greater than zero and can't be arbitrarily small

o Let h*(n) be the cost of an optimal path fron n to a goal node (oo if
there is no path)

@ A heuristic h is admissible if it satisfies the condition
h(n) < h*(n).

That is, an admissible h always underestimates the true cost, never
overestimates.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 17 /29

Consistency / monotonicity

@ A heuristic h is monotone (consistent) if it satisfies the trangle
inequality for all nodes ny, ny:

h(n1) < c(n — n2) + h(my).

@ Note that there might be multiple transitions (action) from n; to ny,
and the inequality must hold for all of them

@ This is a stronger condition than admissibility. Monotonicity implies
admissibility.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 18 /29

Intuition behind admissibility

@ h(n) < h*(n) means that the search won't miss any promising paths

o If it really is cheap to get to a goal via n (i.e., both g(n) and h*(n)
are low), then f(n) = g(n) + h(n) will also be low, and the search
won't ignore n in favour of more expensive options

@ This can be formalized to show that admissibility implies optimality

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 19 /29

Intuition behind monotonicity

@ h(n1) < c(n — n2) + h(ny)

@ This says something similar, but in addition one won't be “locally”
mislead — see example

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 20/29

Example: admissible but non-monotonic

{5} = {n[200 + 50 = 250], n2[200 + 100 = 300]}
= {n,[200 + 100 = 300], n3[400 + 50 = 450]}
= {n4[200 + 50 = 250], n3[400 + 50 = 450]}
= {Goal[300 + 0 = 300], n3[400 + 50 = 450]}

We do find the optimal path as the heuristic is still admissible, but we are mislead into

ignoring no until after we expand n
Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 21/29

Monotonicity implies admissibility

If h(nm) <c(n — n2)+ h(nz) then h(n) < h*(n)

Proof by induction on the number of steps to a goal node M

o (Base case) If nis a goal node, then h(n) =0 = h*(n), so
h(n) < h*(n)

@ (Induction step) Assume h(nyx) < h*(ny) if number of steps to goal at
nk is at most K. Show that the proposition must hold for nodes nj 1
where number of steps to goal is K + 1:

Let nk be the next node along a shortest path from ny; to goal

Since h is monotone, have h(ng41) < c(nk+1 — nk) + h(nk)

By ind. hypothesis, h(ng) < h*(ng)

So h(nk+1) < c(ngy1 — nk) + h*(ng)

ThUS, h(nk+1) S h*(nk+1)

@ If goal is unreachable from a node n, then h*(n) = co and the result
trivially holds.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 22/29

Consequences of monotonicity

1. The f-values of nodes along a path must be non-decreasing
o le., If pathis (S = ny — np — ... — ng), we claim that
f(ni) < f(nis1)
@ Proof:

f(ni) = c(Start — ... — n;) + h(n;)
< c(Start — ... = nj) + c(ni = nix1) + h(niy1)
= c(Start — ... — nj — nj11) + h(niz1)
= g(ni+1) + h(nit1)
= f(nit1)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020

Consequences of monotonicity

2. If ny is expanded after np, then f(ny) < f(n)

@ Proof:

o If ny was on the frontier when n; was expanded, then f(ny) < f(ny),
because otherwise we would've selected n, to expand

o If ny was added to the frontier after ny's expansion, then let n be an
ancestor of ny that was present when n; was being expanded (this
could be ny itself). We have f(n;) < f(n) since A* chose n; rather
than n. Also, since n is along the apth to n», by the previous property,
we have f(n) < f(ny). Thus, we get f(ny) < f(ny).

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 24/29

Consequences of monotonicity

3. When n is expanded, every path with a lower f-value has already
been expanded

@ Assume by contradiction that there exists a path
(Start,...,nj_1,ni,niy1,...,nk) with f(ng) < f, and n; is its last
expanded node.

@ Then nj11 must be on the frontier while n is expanded.

@ By (1), f(ni+1) < f(nk) since they lie along the same path
@ Since f(nk) < f(n), we get f(niy1) < f(n)

@ By (2), f(n) < f(niy1) since n is expanded before n; 1
Contradiction in last two points.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020

Consequences of monotonicity

4. With a monotone heuristic, the first time A* expands a state, it
has found the minimum cost path to that state
Proof:

@ Let Pathy be (Start, ng, ..., ng,n) be the first path to n found.
Then f(Pathy) = c(Pathy) + h(n).
(

@ Let Pathy be (Start, mg, ..., mj,n) be the another path to n found
later. Then f(Pathy) = c(Pathy) + h(n).

e By property (3), f(Pathy) < f(Pathy)
e Hence, c(Pathy) < c(Pathy)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 26 /29

Consequences of monotonicity

Completeness

@ Yes

o Consider a least-cost path to goal: Solution = (Start, ng, ..., Goal)
with cost c(Solution)

@ Since each action has a cost > € > 0, there are only a finite number
of nodes (paths) that have cost < c¢(Solution)

@ All of these paths myst be explored before any path of cost
> c(Solution)

@ So eventually Solution, or some equal-cost path to a goal must be
expanded

Time and Space Complexity
@ When h(n) = 0 for all n, h is monotone, and A* becomes
uniform-cost search.
@ It can be shown that when h(n) > 0 for some n, the number of nodes
expanded can be no larger than uniform-cost
@ Thus, same worst-case bounds as uniform-cost apply

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 27/29

Consequences of monotonicity

Optimality
@ Yes, by last property, the first path to a goal node must be optimal

Cycle Checking

@ If we do cycle checking, it is still optimal. Due to last property, we
need to keep only the first path to a node, rejecting all subsequent
paths

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 28/29

End of Lecture

@ Next time: Heuristic Search continued

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 12 November 2, 2020 29/29

