
EECS 3401 — AI and Logic Prog. — Lecture 11
Adapted from slides of Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

October 28, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 1 / 49

Today: Search Algorithms

Required reading: Russell & Norvig Chapters 3.1–3.4

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 2 / 49

Algorithms for Search

Inputs:

an initial state—a specific world state or a set of world states
representing the agent’s knowledge, etc.

a successor function S(x) = a set of states that can be reached
from state x via a single action

a goal test—a function that can be applied to a state and returns
True if the state satisfies the goal condition

a step cost function C (x , a, y) which determines the cost of moving
from state x to state y using action a.
C(x , a, y) = ∞ if a does not lead to y from x

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 3 / 49

Algorithms for Search

Output:

a sequence of states leading from the initial state to a state satisfying
the goal test

The sequence might be

annotated by the name of the actions used;
optimal in cost (for some algorithms)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 4 / 49

Algorithms for Search

Obtaining the action sequence:

The set of successors of a state x might arise from different actions,
e.g.,

x ⇒ a⇒ y
x ⇒ b ⇒ z

Successor function S(x) yields a set of states that can be reached
from x via any single action

Rather than just return a set of states, we might want to annotate
these states by the action used to obtain them:

S(x) = {〈y , a〉, 〈z , b〉}
y via action a, z via action b

S(x) = {〈y , a〉, 〈y , b〉}
y via action a, also y via action b

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 5 / 49

Tree Search

Tree Search: a way to explore the state space in a tree-like fashion

Root = initial state

Frontier = set of unexplored nodes/states (so far)

Branch = action that is possible in current node/state + the resulting
node/state
Use the successor state function to expand the current state

TreeSearch(Frontier, Successors, Goal?)

if Frontier is empty

return failure

Current := select state from Frontier

if Goal?(Current)

return Current

NewFrontier := (Frontier - {Current})

+ Successors(Current)

return TreeSearch(NewFrontier, Successors, Goal?)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 6 / 49

Tree search in Prolog

treeS([[State|Path]|_],Soln) :-

Goal(State), reverse([State|Path], Soln).

treeS([[State|Path]|Frontier],Soln) :-

GenSuccessors(State,Path,NewPaths),

merge(NewPaths,Frontier,NewFrontier),

treeS(NewFrontier,Soln).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 7 / 49

Example: Travelling in Romania

Currently in Arad, need to get to Bucharest by tomorrow to catch a flight

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 8 / 49

Example: Travelling in Romania

Frontier: {Arad}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 9 / 49

Example: Travelling in Romania

Frontier: {Zerind, Timisoara, Sibiu}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 10 / 49

Example: Travelling in Romania

Frontier: {Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea }

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 11 / 49

Example: Travelling in Romania

Frontier: {Zerind, Timisoara, Arad, Oradea, Sibiu, Bucharest, ... }

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 12 / 49

Example: Travelling in Romania

Solution: Arad–Sibiu–Fagaras–Bucharest

Cost: 140 + 99 + 211 = 450

That’s not the only solution

Alternative: Arad–Sibiu–Rimnicu Vilcea–Pitesti–Bucharest

Cost: 140 + 80 + 97 + 101 = 418

Alternative is cheaper!

Way of picking the next node to expand is important

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 13 / 49

Example: Travelling in Romania

It gets worse with cycles

Frontier: {Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea}
What if we chose to expand Arad instead?

Infinite search tree, no solution

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 14 / 49

Selection Rule

The order of selecting frontier states to expand is of critical importance to

whether the solution will be found at all

the cost of the solution (if one is found)

the time and space consumed by search.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 15 / 49

Critical Properties of Search

Completeness — Will the search always find a solution if one exists?

Optimality — Will the search always find the cheapest solution?

Time complexity — What is the maximum number of nodes that
can be generated or expanded?

Space complexity — What is the maximum number of nodes that
have to be stored in memory?

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 16 / 49

Uninformed Search Strategies

Adopt a fixed selection rule

Rule is always the same regardless of the specific search problem

Do not take into account any domain-specific information

Popular uninformed search techniques:

Breadth-first
Uniform-cost
Depth-first
Depth-limited
Iterative-deepening

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 17 / 49

Selecting versus Sorting

The problem of selection can be reframed as the problem of sorting

Commit to the following selection rule:
1 Arrange frontier elements according to some order
2 Always select the first element

Then, the sorting criteria define the search strategy

Will adopt this approach

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 18 / 49

Breadth-First

Place the successors of the current state at the end of the frontier

Then, frontier behaves as a First-In-First-Out queue

Example:

Let the states be non-negative integers {0, 1, 2, 3, ...}
Successor state: S(n) = {n + 1, n + 2}
Initial state: 0
Goal state: 5

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 19 / 49

Example

Let the states be non-negative integers {0, 1, 2, 3, ...}
Successor state: S(n) = {n + 1, n + 2}
Initial state: 0

Goal state: 5

0

1 2

3 3 42

43 4 5 4 5 5 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 20 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 21 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 22 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 23 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 24 / 49

Breadth-First Properties

Time Complexity — number of nodes generated (Let b the maximum
number of children per node)

Level 0 (root): 1

Level 1: b

Level 2: b · b = b2

Level 3: b · b2 = b3

. . .

Level d : bd

Level d + 1: bd+1 − b = b(bd − 1)
when last node in level d is the goal and does not need to be expanded

Total: 1 + b + b2 + . . .+ bd−1 + bd + b(bd − 1)

O(bd+1) — exponential, so only works for small instances

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 25 / 49

Breadth-First Properties

Space Complexity — number of nodes stored

O(bd+1): If the goal node is the last node at level d , all of the
successors of the other nodes will be on the frontier when we get to
the goal, i.e., b(bd − 1)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 26 / 49

Breadth-First Properties

Optimality

Will find the shortest solution

Least-cost solution? Generally, no. Will if all step costs are equal.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 27 / 49

Breadth-First Properties

Space complexity is a real problem

Let b = 10, and say 1000 nodes can be expanded per second and
each node requires 100 bytes of storage.

Depth Nodes Time Memory

1 1 1 ms 100 bytes
6 106 18 min 111 MB
8 108 31 hrs 11 GB

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 28 / 49

Uniform-Cost Search

Keep the frontier sorted in increasing cost of the path to a node
(behaves like a priority queue)

Always expand the least-cost node

Identical to breadth-first if each transition has the same cost

Example:

Let the states be non-negative integers {0, 1, 2, 3, ...}
Successor state: S(n) = {n + 1, n + 2}
Action n + 1 has cost 2, action n + 2 has cost 3

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 29 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

2 3

4 5 5 6

6 7 7 8 7 8 8 9

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 30 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

2 3

4 5 5 6

6 7 7 8 7 8 8 9

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 31 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

2 3

4 5 5 6

6 7 7 8 7 8 8 9

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 32 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

2 3

4 5 5 6

6 7 7 8 7 8 8 9

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 33 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

2 3

4 5 5 6

6 7 7 8 7 8 8 9

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 34 / 49

Uniform-Cost Search

Completeness

Assume each transition has costs ≥ ε > 0 (otherwise can have an
infinite path with finite cost)

The previous argument used for breadth-first search holds: the cost of
the expanded state must increase monotonically

Algorithm expands nodes in order of increasing path costs

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 35 / 49

Uniform-Cost Search

Time and Space Complexity

O
(
b

C?

ε

)
, where C ? is the cost of the optimal solution

Difficulty is that there may be many long paths with cost ≤ C ? —
uniform cost search must explore them all

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 36 / 49

Uniform-Cost Search

Optimality

If each transition has cost ≥ ε > 0, finds optimal solution

Explores paths in the search space in increasing order of cost. Thus,
must find minimum cost path to a goal before finding any higher cost
paths.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 37 / 49

Uniform-Cost Search: proof of optimality

Let c(n) be the cost of the path to node n.

1. If node n2 is expanded after node n1, then c(n1) ≤ c(n2).

Proof:

If n2 was already on the frontier when n1 was expanded, then
c(n2) ≥ c(n1) (otherwise, n1 wouldn’t have been selected for
expansion)

If n2 was added to the frontier as the result of expanding n1, then
c(n2) ≥ c(n1) (since the path to n2 extends that to n1)

If n2 is a successor of a node n3 that was already on the frontier or
added as the result of expanding n1, then c(n2) > c(n3) and
c(n3) ≥ c(n1) by the previous arguments

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 38 / 49

Uniform-Cost Search: proof of optimality

2. When n is expanded, every path with cost strictly less than c(n) has
already been expanded.

Proof:

Let 〈Start, n0, n1, . . . , nk〉 be a path with cost less than c(n). Len ni
(0 ≤ i < k) be the last node on this path that has been expanded

ni+1 must be on the frontier, also c(ni+1) < c(n) since the cost of
the entire path to nk is less than c(n)

But then uniform-cost would have expanded ni+1 and not n

Thus, every node on this path must already be expanded, i.e., this
path has already been expanded.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 39 / 49

Uniform-Cost Search: proof of optimality

2. The first time uniform-cost expands a state, it has found the
minimal-cost path to it (it may later find other paths to the same state)

Proof:

No cheaper path exists, else that path would have been expanded
before

No cheaper path will be discovered later, as all those paths must be
at least as expensive

So, when a goal state is expanded, the path to it must be optimal

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 40 / 49

Depth-First Search

Place the successors of the current state at the front of the frontier

Frontier behaves like a stack

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 41 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 42 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 43 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 44 / 49

Example

0

1 2

3 3 42

43 4 5 4 5 5 6

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 45 / 49

Depth-First Properties

Completeness? No

Infinite paths cause incompleteness. Typically come from cycles in the
search space.

If we prune paths with duplicate states, we obtain completeness,
provided that the search space is finite

Optimality? No

Can find goal along a longer branch

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 46 / 49

Depth-First Properties

Time Complexity

O(bm), where m is the length of the longest path in the state space

Why? Worst case expands 1 + b + b2 + . . .+ bm−1 + bm = O(bm)
nodes (assuming no cycles)

Very bad if m is much larger than d , but if there are many solution
paths, depth-first can be much faster than breadth-first

At each step, frontier nodes are backtrack points

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 47 / 49

Depth-First Properties

Space Complexity

O(b ·m) — linear space!

Only explores one path at a time

The frontier only contains the deepest states on the current path
along with the backtrack points

Can even reduce to O(m) if we generate siblings one at a time

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 48 / 49

End of Lecture

Next time: Algorithms for Search continued

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 11 October 28, 2020 49 / 49

