
EECS 3401 — AI and Logic Prog. — Lecture 9
Adapted from slides of Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

October 19, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 1 / 37

Prolog

Today: Prolog. Control flow, Negation, Second-Order programming,
Tail recursion

Required reading: Clocksin & Mellish Chapters 3, 4, 6, 10

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 2 / 37

Simplicity Hides Complexity

Simple composition (via ∧ and ∨) of goals hides complex control
patterns

Not easily represented by traditional flowcharts

May not be a bad thing

Want important aspects of logic and algorithm to be clearly
represented and irrelevant details to be left out

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 3 / 37

Semantics: Procedural and Declarative

Prolog programs have both a declarative (logical) semantics and a
procedural semantics

Declarative: query holds if it is a logical consequence of the program

Procedural: query succeeds if a matching fact or rule succeeds
Defines order in which goals are attempted, what happens when they fail, etc.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 4 / 37

Conjunction and Disjunction

Prolog’s and (the comma ,) and or (semicolon ;)1 are not purely
logical operations

It is often important to consider the order in which goals are
attempted

Left-to-right for , and ;

Top-to-bottom for facts/rules

1Recall, this is syntactic sugar for having multiple rules defining same goal
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 5 / 37

Conjunction is not always commutative

From last time:
?- cousinOf(X,Y), american(X).

vs
?- american(X), cousinOf(X,Y).

Also from an earlier lecture:
?- parent(P, C1), parent(P, C2), not(C1 = C2).

vs
?- parent(P, C1), not(C1 = C2), parent(P, C2).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 6 / 37

Conjunction is not always commutative

Querying the same knowledge base:

?- parent(P, C1), parent(P, C2), not(C1 = C2).

P = 'Mary',

C1 = 'Elizabeth',

C2 = 'Margaret' .

?- parent(P, C1), not(C1 = C2), parent(P, C2).

false.

Why?

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 7 / 37

Uses of ;

Disjunction operator ; can be used to regroup several rules with the
same head

parent(X,Y) :- mother(X,Y); father(X,Y).

Can improve efficiency by avoiding redoing unification

Important: ; has lower precedence than , , just like in logic

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 8 / 37

Prolog negation

Prolog uses Negation As Failure, not logical negation!

Operator: \+ — “not provable”

The operator not is a deprecated synonym for \+ , feel free to use
either in this course

Negation As Failure means: if the statement cannot be proven by
Prolog, assume it’s false

\+ goal succeeds if goal fails.

Interpreting \+ as negation amounts to making the closed-world
assumption (CWA)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 9 / 37

NAF Example

KB:

human(ulyssus).

human(penelope).

mortal(X) :- human(X).

Query:

?- \+ human(jason).

true.

In proper logical semantics, these axioms do not bear out
¬human(jason).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 10 / 37

Semantics of free variables under \+ is weird

Normally, variables in a query are exitstentially quantified from outside

Query ?- p(X), q(X). means “there exists X such that p(X)

and q(X) ”.

But query ?- \+((p(X), q(X))). means “it is not the case

that there exists X such that p(X) and q(X) ”.

Contrast with “there exists X for which neither p(X) nor q(X) holds” — a

totally different meaning

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 11 / 37

To Avoid Pitfalls

\+ works correctly if its argument is instantiated

For example, in the rule
intersect([X|L],Y,I):- \+ member(X,Y), intersect(L,Y,I).

X and Y should both be instantiated.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 12 / 37

Another Example

Program: animal(cat). vegetable(turnip).

Queries:

?- \+ animal(X), vegetable(X).

false.

/* Why??? */

?- vegetable(X), \+ animal(X).

X = turnip.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 13 / 37

Guarding the “else”

Suppose you have two rules for same predicate, which cover two
mutually exclusive cases

Can’t rely on implicit negation in predicates that can be redone

Whenever there are alternative rules and backtracking, each rule
should be logically valid

Safe bet: in the “else” rule, repeat the guarding condition with
negation

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 14 / 37

Example: intersect

Bad:

intersect([], _, []).

intersect([X|L],Y,[X|I]):- member(X,Y), intersect(L,Y,I).

intersect([X|L],Y,I):- /* nothing here */ intersect(L,Y,I).

?- intersect([a], [b, a], []).

true. /* Why??? */

Good:

intersect([], _, []).

intersect([X|L],Y,[X|I]):- member(X,Y), intersect(L,Y,I).

intersect([X|L],Y,I):- \+ member(X,Y), intersect(L,Y,I).

?- intersect([a], [b, a], []).

false.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 15 / 37

Example: intersect using the Cut

Also good (and more efficient), using the Cut:

intersect([], _, []).

intersect([X|L],Y,Z):- member(X,Y), !,

Z=[X|I], intersect(L,Y,I).

intersect([X|L],Y,I):- /* no guard */ intersect(L,Y,I).

?- intersect([a], [b, a], []).

false.

Why more efficient?

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 16 / 37

Cut used to define useful features

Built-in goal fail always fails.

?- fail.

false.

If goal g should be false when c_1 , . . . , c_n holds, can write

g :- c_1, ... , c_n, !, fail.

With this pattern, we can actually define Prolog negation:

\+ g :- g, !, fail.

\+ g.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 17 / 37

Some Control Predicates

true — bult-in goal, always succeeds

fail — always fails

repeat — always succeeds, infinite number of choice points

loopUntilNoMore :- repeat, doStuff, checkNoMore.

but tail recursion is cleaner:

loop :- doStuff, (checkNoMore; loop).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 18 / 37

Forcing All Solutions

Program:

test :- member(X, [1,2,3]), nl, print(X), fail.

print and nl have no alternative solutions, but member does:

?- test.

1

2

3

false.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 19 / 37

Second-Order Features: bagof and setof

bagof(T,G,L) — instantiates L to the list of all instances of T

for which goal G succeeds

Example:

?- member(X,[2,5,7,3,5]),X >= 3.

X = 5 ;

X = 7 ;

X = 3 ;

X = 5.

?- bagof(X, (member(X,[2,5,7,3,5]),X >= 3), L).

L = [5, 7, 3, 5].

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 20 / 37

Second-Order Features: bagof and setof

setof is similar to bagof , except it removes duplicates from the
output list:

?- bagof(X, (member(X,[2,5,7,3,5]),X >= 3), L).

L = [5, 7, 3, 5].

?- setof(X,(member(X,[2,5,7,3,5]),X >= 3),L).

L = [3, 5, 7].

Can also collect values of several variables by putting them in a
struct:

?- bagof(pair(X,Y),

(member(X,[a,b]),member(Y,[c,d])),

L).

L = [pair(a, c), pair(a, d), pair(b, c), pair(b, d)].

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 21 / 37

Second-Order Features

setof and bagof are called “Second-Order” features because they
are queries about the value of a set or relation, as opposed to
measly individuals

In logic, this would be quantification over predicates

Not allowed in FOL; this is what Second-Order Logic is for

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 22 / 37

Tail recursion optimization in Prolog

Suppose we have:

Goal A
Rule A′ :- B1 , B2 , . . . , Bn−1 , Bn .

Goal A unifies with head A′

Sub-goals B1 , B2 , . . . , Bn−1 all succeed.

If there are no alternatives2 left for A and for B1 , B2 , . . . , Bn−1,
then we can simply replace the goal A by sub-goal Bn on execution
stack

In such cases, the predicate A is tail-recursive

Whether Bn succeeds or fails, there is nothing left to do in A, so we
can replace the call stack frame for A by that of Bn. Then, the
recursion can be as space efficient as iteration

2i.e., ways of proving
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 23 / 37

Example: factorial

Recall this implementaion of factorial:

f(0,1).

f(N,F):- N>0, M is N-1, f(M,F1), F is N*F1.

Close to mathematical definition

Not tail-recursive

Requires O(N) in stack space

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 24 / 37

Example: factorial

A better implementation

f(N,F):- f1(N,1,F). /* alias */

f1(0,F,F).

f1(N,T,F):- N>0, T1 is T*N, N1 is N-1, f1(N1,T1,F).

Uses an accumulator

Is tail-recursive and each call can replace the previous call

Can prove correctness

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 25 / 37

Example: append

append([],L,L).

append([X|R],L,[X|RL]):- append(R,L,RL).

append is tail-recursive if the first argument is fully instantiated

Prolog must detect the fact that there are no alternatives left; may
depend on clause indexing mechanism used

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 26 / 37

Example: split

split([],[],[]).

split([X],[X],[]).

split([X1,X2|R],[X1|R1],[X2|R2]):- split(R,R1,R2).

Tail-recursive!

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 27 / 37

Example: merge

merge([],L,L).

merge(L,[],L).

merge([X1|R1],[X2|R2],[X1|R]) :-

order(X1,X2), merge(R1,[X2|R2],R).

merge([X1|R1],[X2|R2],[X2|R]) :-

not order(X1,X2), merge([X1|R1],R2,R).

Tail-recursive, but the lack of alternatives may be hard to detect (can use
cut to simplify)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 28 / 37

Example: mergesort

mergesort([],[]).

mergesort([X],[X]).

mergesort(L,S):- split(L,L1,L2),

mergesort(L1,S1), mergesort(L2,S2), merge(S1,S2,S).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 29 / 37

A really cool example: Finite State Automata

A Finite State Automaton (Σ,S , s0, δ,F) is a representation of a machine
as

a finite set of states S

an input alphabet Σ

a state transition relation/table δ, where the current state (∈ S) and
current input symbol (∈ Σ) are mapped to next state (∈ S)

an initial state s0

a set of final states F

A FSA accepts an input sequence over alphabet Σ if, starting in the
designated starting state s0, scanning the input sequence leaves the
automaton in a final state (∈ F)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 30 / 37

FSA: example

Consider:

An automaton that accepts strings of symbols over the alphabet
{x , y} which contain an even number of x’s and an odd number of y’s.

Idea: keep track of whether we’ve seen an even or odd number of
each symbol

S = {ee, eo, oe, oo}
s0 = ee

δ = {(ee, x , oe), (ee, y , eo), . . .}
F = {eo}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 31 / 37

Implementation

fsa(Input) succeeds if and only if the FSA accepts or recognizes

the sequence (list) Input

Initial state represented by a predicate initial_state(State)

Final state represented by a predicate final_states(List)

State transition table represented by a predicate
next_state(State, InputSymbol, NextState)

Note: next_state need not be a function

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 32 / 37

Implementing fsa/1

fsa(Input) :- initial_state(S), scan(Input, S).

scan([], State) :- final_states(F), member(State, F).

scan([Symbol | Seq], State) :-

next_state(State, Symbol, Next), scan(Seq, Next).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 33 / 37

Result Propagation

scan uses “pumping”/result propagation

Carries around current state and the remainder of the input sequence

If FSA is deterministic, when the end of input is reached, can make
an accept/reject decision immediately; tail recursion optimization can
be applied

If FSA is non-deterministic, may have to backtrack; must keep track
of remaining alternatives on execution stack

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 34 / 37

Non-determinism

A non-deterministic FSA accepts an input sequence if there exists at
least one sequence which leaves the automaton in one of its final
states

?- fsa(Input).

scan searches through all possible choices for Symbol at each
state, fails only if no sequence leads to a final state

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 35 / 37

Representing tables

Can use a binary connector, e.g. A-B-C instead of

next_state(A,B,C) — looks cleaner, may help in spotting typos

Program may look something like

ee-x-oe. /* Insted of next_state(ee,x,oe) */

ee-y-eo.

oe-x-ee.

oe-y-oo.

scan([], State) :- final_states(F), member(State, F).

scan([Symbol | Seq], State) :-

State-Symbol-Next, scan(Seq, Next).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 36 / 37

End of Lecture

Next time: Search

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 9 October 19, 2020 37 / 37

