EECS 3401 — Al and Logic Prog. — Lecture 9

Adapted from slides of Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

October 19, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 1/37

o Today: Prolog. Control flow, Negation, Second-Order programming,
Tail recursion

@ Required reading: Clocksin & Mellish Chapters 3, 4, 6, 10

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 2/37

Simplicity Hides Complexity

e Simple composition (via A and V) of goals hides complex control
patterns

@ Not easily represented by traditional flowcharts
@ May not be a bad thing

@ Want important aspects of logic and algorithm to be clearly
represented and irrelevant details to be left out

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 3/37

Semantics: Procedural and Declarative

@ Prolog programs have both a declarative (logical) semantics and a
procedural semantics

@ Declarative: query holds if it is a logical consequence of the program

@ Procedural: query succeeds if a matching fact or rule succeeds
Defines order in which goals are attempted, what happens when they fail, etc.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 4/37

Conjunction and Disjunction

@ Prolog's and (the comma ,) and or (semicolon ;)! are not purely

logical operations
@ It is often important to consider the order in which goals are
attempted
o Left-to-right for , and ;
o Top-to-bottom for facts/rules

'Recall, this is syntactic sugar for having multiple rules defining same goal
October 19, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9

Conjunction is not always commutative

@ From last time:
?- cousinOf (X,Y), american(X).
Vs
?- american(X), cousinOf(X,Y).

@ Also from an earlier lecture:
?7- parent(P, C1), parent(P, C2), not(Cl = C2).
Vs
?7- parent(P, C1), not(Cl = C2), parent(P, C2).

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 6/37

Conjunction is not always commutative

Querying the same knowledge base:

?7- parent(P, Cl1l), parent(P, C2), not(Cl = C2).

P = 'Mary',
Cl1 = 'Elizabeth',
C2 = 'Margaret'

?7- parent(P, Cl1), not(Cl = C2), parent(P, C2).
false.

Why?

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 7/37

@ Disjunction operator ; can be used to regroup several rules with the
same head

parent (X,Y) :- mother(X,Y); father(X,Y).

o Can improve efficiency by avoiding redoing unification

@ Important: ; has lower precedence than , , just like in logic

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 8/37

Prolog negation

@ Prolog uses Negation As Failure, not logical negation!

@ Operator: \+ — “not provable”

@ The operator not is a deprecated synonym for \+, feel free to use
either in this course

@ Negation As Failure means: if the statement cannot be proven by
Prolog, assume it’s false

@ \+ goal succeeds if goal fails.

@ Interpreting \+ as negation amounts to making the closed-world
assumption (CWA)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 9/37

NAF Example

e KB:

human (ulyssus) .
human (penelope) .
mortal (X) :- human(X).

o Query:

7- \+ human(jason) .
true.

@ In proper logical semantics, these axioms do not bear out
—human(jason).

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo

EECS 3401 Lecture 9

October 19, 2020 10 /37

Semantics of free variables under is weird

o Normally, variables in a query are exitstentially quantified from outside
@ Query ?7- p(X), q(X). means “there exists X such that p(X)

and q(X) ".
@ But query 7- \+((p(X), q(X))). means “it is not the case
that there exists X such that p(X) and q(X) ".

Contrast with “there exists X for which neither p(X) nor q(X) holds” — a

totally different meaning

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 11/37

To Avoid Pitfalls

@ \+ works correctly if its argument is instantiated

@ For example, in the rule
intersect ([X|L],Y,I):- \+ member(X,Y), intersect(L,Y,I).
X and Y should both be instantiated.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 12/37

Another Example

@ Program: animal(cat). vegetable(turnip).

@ Queries:

7- \+ animal(X), vegetable(X).
false.
/% Why??2 */

7- vegetable(X), \+ animal(X).
X = turnip.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 13 /37

Guarding the “else”

@ Suppose you have two rules for same predicate, which cover two
mutually exclusive cases

o Can't rely on implicit negation in predicates that can be redone

@ Whenever there are alternative rules and backtracking, each rule
should be logically valid

@ Safe bet: in the “else” rule, repeat the guarding condition with
negation

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 14 /37

Example:

Bad:

intersect([1, _, [1).
intersect ([XIL],Y, [X|I]):- member(X,Y), intersect(L,Y,I).
intersect([XIL],Y,I):- /* nothing here */ intersect(L,Y,I).

?7- intersect([al, [b, al, [1).
true. /* Why?2? x/

Good:

intersect([], _, [1).
intersect ([X|L],Y, [X|I]):- member(X,Y), intersect(L,Y,I).
intersect ([X|L],Y,I):- \+ member(X,Y), intersect(L,Y,I).

?- intersect([a]l, [b, al, [1).
false.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 15 /37

Example: using the Cut

Also good (and more efficient), using the Cut:

intersect([1, _, [1).
intersect ([X|L],Y,Z) :— member(X,Y), !,

Z=[X|I], intersect(L,Y,I).
intersect([XIL],Y,I):- /* no guard */ intersect(L,Y,I).

?7- intersect([al, [b, al, [1).
false.

Why more efficient?

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020

Cut used to define useful features

@ Built-in goal fail always fails.

?- fail.
false.

o If goal g should be false when c_1, ..., c_n holds, can write
g :-—c.1, ..., cn, !, fail.

@ With this pattern, we can actually define Prolog negation:

\+ g :-g, !, fail.
\+ g.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 17 /37

Some Control Predicates

@ true — bult-in goal, always succeeds
e fail — always fails

@ repeat — always succeeds, infinite number of choice points
loopUntilNoMore :- repeat, doStuff, checkNoMore.
but tail recursion is cleaner:

loop :- doStuff, (checkNoMore; loop).

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020

Forcing All Solutions

@ Program:

test :- member(X, [1,2,3]), nl, print(X), fail.

e print and nl have no alternative solutions, but member does:

7- test.
1

2

3

false.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 19 /37

Second-Order Features: and

@ bagof(T,G,L) — instantiates L to the list of all instances of T
for which goal G succeeds

@ Example:

?- member (X, [2,5,7,3,5]),X >= 3.
X=5;

X 7
X=3;
X 5

?- bagof (X, (member(X,[2,5,7,3,5]),X >= 3), L).
L=1[5,7, 3, 5].

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 20/37

Second-Order Features: and

@ setof is similar to bagof , except it removes duplicates from the
output list:

?- bagof (X, (member(X,[2,5,7,3,5]),X >= 3), L).
L=1[5,7, 3, 5].

?7- setof (X, (member (X, [2,5,7,3,5]),X >= 3),L).
L = [3, 5: 7]'

@ Can also collect values of several variables by putting them in a
struct:

7- bagof (pair(X,Y),
(member (X, [a,b]) ,member (Y, [c,d])),
L).
L = [pair(a, c), pair(a, d), pair(b, c), pair(b, d)].

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 21/37

Second-Order Features

@ setof and bagof are called “Second-Order” features because they

are queries about the value of a set or relation, as opposed to
measly individuals

@ In logic, this would be quantification over predicates
@ Not allowed in FOL; this is what Second-Order Logic is for

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9

October 19, 2020 22/37

Tail recursion optimization in Prolog

@ Suppose we have:

Goal A

o Rule A’ Z—Bl) Bg > I o anl 5 Bn o
o Goal A unifies with head A’
o

Sub-goals By , B>, ... , B,_1 all succeed.
o If there are no alternatives? left for A and for By , B> , ... , Bn_1,
then we can simply replace the goal A by sub-goal B, on execution
stack

@ In such cases, the predicate A is tail-recursive

@ Whether B,, succeeds or fails, there is nothing left to do in A, so we
can replace the call stack frame for A by that of B,. Then, the
recursion can be as space efficient as iteration

%j.e., ways of proving

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 23 /37

Example: factorial

Recall this implementaion of factorial:

£(0,1).
f(N,F):- N>0, M is N-1, £f(M,F1), F is N*F1.

Close to mathematical definition

Not tail-recursive

Requires O(N) in stack space

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020

Example: factorial

@ A better implementation

f(N,F):- f1(N,1,F). /* alias */

£1(0,F,F).
f1(N,T,F):- N>0, T1 is T#N, N1 is N-1, f1(N1,T1,F).

@ Uses an accumulator
@ Is tail-recursive and each call can replace the previous call

@ Can prove correctness

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 25 /37

Example:

append([],L,L).
append ([X|R],L, [XIRL]) :- append(R,L,RL).

@ append is tail-recursive if the first argument is fully instantiated

@ Prolog must detect the fact that there are no alternatives left; may
depend on clause indexing mechanism used

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 26 /37

Example:

split (1,01, 01).
split ([X]1, [X1,[1).
split ([X1,X2|R], [X1|R1], [X2|R2]):- split(R,R1,R2).

Tail-recursive!

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 27 /37

Example:

merge([],L,L).
merge (L, [1,L).
merge ([X1|R1], [X2|R2], [X1|R]) :-
order(X1,X2), merge(R1, [X2|R2],R).
merge ([X1|R1], [X2|R2], [X2|R]) :-
not order(X1,X2), merge([X1|R1],R2,R).

Tail-recursive, but the lack of alternatives may be hard to detect (can use
cut to simplify)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 28 /37

mergesort

mergesort([]1,[]).
mergesort ([X], [X]1).
mergesort(L,S):- split(L,L1,L2),
mergesort(L1,51), mergesort(L2,52), merge(S1,S2,S).

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 29 /37

A really cool example: Finite State Automata

A Finite State Automaton (X, S, s, d, F) is a representation of a machine
as

@ a finite set of states S
@ an input alphabet &

@ a state transition relation/table §, where the current state (€ S) and
current input symbol (€ X) are mapped to next state (€ S)

an initial state sg

a set of final states F

A FSA accepts an input sequence over alphabet X if, starting in the
designated starting state sp, scanning the input sequence leaves the
automaton in a final state (€ F)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 30/37

FSA: example

Consider:

@ An automaton that accepts strings of symbols over the alphabet
{x, y} which contain an even number of x's and an odd number of y's.

@ ldea: keep track of whether we've seen an even or odd number of
each symbol

o S ={ee, eo0,0e,00}

@ s5p=ee

o 6 ={(ee, x,0€),(ee,y,e0),...}

o F ={eo}

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 31/37

Implementation

o fsa(Input) succeeds if and only if the FSA accepts or recognizes
the sequence (list) Input

@ Initial state represented by a predicate initial_state(State)

o Final state represented by a predicate final_states(List)

@ State transition table represented by a predicate
next_state(State, InputSymbol, NextState)
Note: next_state need not be a function

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 32/37

Implementing

fsa(Input) :- initial_state(S), scan(Input, S).

scan([], State) :- final_states(F), member(State, F).
scan([Symbol | Seq], State) :-
next_state(State, Symbol, Next), scan(Seq, Next).

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 33/37

Result Propagation

@ scan uses “pumping” /result propagation
@ Carries around current state and the remainder of the input sequence

o If FSA is deterministic, when the end of input is reached, can make
an accept/reject decision immediately; tail recursion optimization can
be applied

o If FSA is non-deterministic, may have to backtrack; must keep track
of remaining alternatives on execution stack

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 34 /37

Non-determinism

@ A non-deterministic FSA accepts an input sequence if there exists at
least one sequence which leaves the automaton in one of its final
states

e 7- fsa(Input).

@ scan searches through all possible choices for Symbol at each
state, fails only if no sequence leads to a final state

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 35/37

Representing tables

@ Can use a binary connector, e.g. A-B-C instead of
next_state(A,B,C) — looks cleaner, may help in spotting typos

@ Program may look something like

ee-x-oe. /* Insted of next_state(ee,z,o0e) */
ee-y-eo.
oe-x-ee.
oe-y-0o0.

scan([], State) :- final_states(F), member(State, F).
scan([Symbol | Seql, State) :-
State-Symbol-Next, scan(Seq, Next).

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 36 /37

End of Lecture

@ Next time: Search

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 9 October 19, 2020 37/37

