
EECS 3401 — AI and Logic Prog. — Lecture 8
Adapted from slides of Brachman & Levesque (2005)

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

October 7, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 1 / 25

Reasoning with Horn Clauses

Today: Reasoning with Horn Clauses

Also today: Procedural Control of Reasoning

Required reading: Russell & Norvig, Chapter 9; Clocksin & Mellish
Chapters 4 and 10

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 2 / 25

Reasoning with Horn Clauses

Recall:

A clause is a disjunction of literals: (p, q, r ,¬s)

A Horn clause: same but at most one positive literal is allowed:
(p,¬q,¬r ,¬s)

Think of Horn clauses as implications

¬q1 ∨ ¬q2 ∨ . . . ∨ ¬qn ∨ p Horn clause

(q1 ∧ q2 ∧ . . . ∧ qn)→ p same, as an implication

p :- q_1, q_2, ... , q_n. same, as a Prolog rule

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 3 / 25

Horn Clauses

Some more terminology:

Positive (definite) clause: has exactly one positive literal

(¬q1,¬q2, . . . ,¬qn, p)

Negative clause: no positive literals

(¬q1,¬q2, . . . ,¬qn)

The empty clause {} is negative

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 4 / 25

Resolution with Horn Clauses

When resolving Horn clauses, there are only two possibilities:

(Positive) (Negative) (Positive) (Positive)

(Positive)(Negative)

It is possible to rearrange a resolution proof of a negative clause so
that all new derived clauses are negative:

(p,¬a,¬b)

(¬b, q)(¬a,¬q, p)

(¬a,¬b,¬c)

(¬c ,¬p)

(¬c ,¬p) (¬a,¬q, p)

(¬a,¬c,¬q) (¬b, q)

(¬a,¬b,¬c)

⇒

to eliminate

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 5 / 25

Further Restricting Resolution

It is also possible to perform derivations in such a way that each derived
clause is a resolvent of a previously-derived negative clause and some
positive clause from the knowledge base

Since each derived clause is negative, one parent must be positive
(from KB) and one parent must be negative

Chain backwards from the final derived (negative) clause until both
parents are from the original set of clauses

Eliminate all other clauses not on this direct path

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 6 / 25

SLD Resolution

S Selected literals

L Linear form

D Definite clauses

An SLD derivation of a clause c from a set of clauses KB is a sequence
of clauses c1, c2, . . . , cn such that cn = c and

1 c1 ∈ KB

2 ci+1 is a resolvent of ci and a clause in KB

Notation: KB `SLD c

An SLD derivation is just a special form of a resolution derivation where
we also leave out the KB clauses (except c1)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 7 / 25

SLD Resolution

In general, SLD Resolution is less powerful than regular resolution

Consider KB:

(p, q)

(p,¬q)

(¬p, q)

(¬p,¬q)

States “p and q are identical and mutex at the same time”

Fact: KB ` (), but KB 6`SLD ()
Because to get () we need to resolve (p) with (¬p) or (q) with (¬q) ,
but the KB itself doesn’t contain unit clauses. Thus, a unit clause
with a positive literal needs to be derived, which is not allowed by
SLD.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 8 / 25

Completeness of SLD

For Horn clauses, SLD Resolution is sufficient.

Theorem

SLD Resolution is refutation-complete for Horn clauses.
Let KB be a set of Horn clauses.

KB ` () iff KB `SLD ()

So, KB is unsatisfiable iff KB `SLD (). This considerably simplifies the
search for derivations.

Note: in an SLD derivation with a Horn KB, each clause in
c1, c2, . . . , cn will be negative.

Thus, KB must contain at least one negative clause c1, and this will
be the only negative clause from KB used.

Typically, KB is a collection of positive Horn clauses, and the
negation of the query is the negative clause

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 9 / 25

Example

Show that KB ∪ {¬girl} is unsatisfiable:

KB

(firstGrade)

(¬firstGrade, child)

(¬child ,¬male, boy)

(¬kindergarten, child)

(¬child ,¬female, girl)

(female)

(¬girl)

(¬child ,¬female)

(¬child)

(¬firstGrade)

()

girl

child

firstGrade

female

SLD derivation: Goal tree:

solved

solved

goal

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 10 / 25

Prolog

Horn clauses form the basis of Prolog. Consider:

append([], Z, Z).

append([E1|R1], Y, [E1|Rest]) :- append(R1, Y, Rest).

Observe/recall:

[] is a constant

[a, b, c] is really the term cons(a, cons(b, cons(c, [])))1

The second rule is actually the clause
(¬ append(R1, Y, Rest) , append([E1|R1], Y, [E1|Rest])),
or, expressing lists as terms,
(¬append(R1,Y ,Rest), append(cons(E 1,R1),Y , cons(E 1,Rest)))

1Here, cons stands in for the functor '[|]' for clarity
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 11 / 25

Prolog

(append([] ,Z ,Z))

(¬append(R1,Y ,Rest), append(cons(E 1,R1),Y , cons(E 1,Rest)))

What is the result of append([a,b],[c], X) ?

append(cons(a, cons(b, [])), cons(c , []),X)

append(cons(b, []), cons(c , []),Rest)

append([] , cons(c , []),Rest ′)

Y = cons(c, []),X = cons(E1,Rest)

Y ′ = cons(c, []),Rest = cons(E1′,Rest′)

E1 = a,R1 = cons(b, [])

E1′ = b,R1′ = []

Rest′ = cons(c, [])

Goal succeeds with X = cons(a, cons(b, cons(c , []))), i.e., [a, b, c] .

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 12 / 25

Back-chaining Procedure

Prolog uses the following back-chaining procedure to decide whether a
sequence of goals is true.

solve(q1, q2, . . . , qn):
if n = 0 then
return Yes

for all d ∈ KB do
if d is (q1,¬p1,¬p2, . . . ,¬pm) then

if solve(p1, p2, . . . , pm, q2, . . . , qn) = Yes then
return Yes

return No

This is depth-first, left-right back-chaining.

Depth-first because attempt to prove pi before trying qi

Left-right because proves qi in order, i = 1, 2, 3, . . .

Back-chaining because search from goal q to KB facts p

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 13 / 25

Problems with Back-chaining

Can enter an infinite loop
Clause (p,¬p) says nothing of use (it’s a tautology), but corresponds
to a prolog program p :- p.

Inefficient
Consider 2n atoms p0, . . . , pn−1, q0, . . . , qn−1 and 4(n − 1) clauses

(¬pi−1, pi), (¬qi−1, pi), (¬pi−1, qi), (¬qi−1, qi)

The proof of goal pk eventually fails after 2k steps.

pk

qk−1pk−1

pk−2 qk−2 pk−2 qk−2

.
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 14 / 25

Forward-chaining

Forward-chaining is a simple procedure to determine if Horn KB |= q

Main idea: mark atoms as solved

loop
if q is marked as solved then
return Yes

for all (p1,¬p2, . . . ,¬pm) ∈ KB do
if p2, . . . , pm are marked as solved, but p1 is not then

mark p1 as solved
else
return No

Not goal-oriented, so not always desirable

Can, in principle, run in linear time

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 15 / 25

First-Order Undecidability

Even with just Horn clauses, in the first-order case we still have the
possibility of generating an infinite branch of resolvents

KB: (¬lessThan(succ(X),Y),
lessThan(X ,Y))

Query: lessThan(0, 0)

(¬lessThan(0, 0))

(¬lessThan(1, 0))

(¬lessThan(2, 0))

. . .

X =0,Y =0

X ′=1,Y ′=0

X ′′=2,Y ′′=0

As with regular resolution, there isn’t and cannot be a general way to
detect when this will happen.

Satisfiability of FOL Horn theories is undecidable

Best we can do is to give control of the deduction to the user

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 16 / 25

Procedural Control of Reasoning

Theorem proving (e.g. resolution) is a general domain-independent
method of reasoning

Not tailored to a specific domain or application — treats all
knowledge the same

With some applications, though, there are glaringly obvious shortcuts
to be exploited

Want to be able to guide the theorem-proving procedure

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 17 / 25

Facts & Rules

(Recall from Prolog) When working with Horn clauses, we can separate
them into facts and rules

motherOf(jane, billy). /* specific facts */

fatherOf(john, billy).

fatherOf(sam, john).

parentOf(X, Y) :- motherOf(X, Y). /* universal rules */

parentOf(X, Y) :- fatherOf(X, Y).

childOf(X, Y) :- parentOf(Y, X).

ancestorOf(X, Y) :- /* and so on */

Both are retrieved by unification matching.
Same rules can be formulated in different ways to guide the proving
procedure.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 18 / 25

Rule Formulation: Example

Consider ancestorOf defined in terms of parentOf .

Base case:
ancestorOf(X, Y) :- parentOf(X, Y).

Recursive case variants:
ancestorOf(X,Y) :- parentOf(X,Z), ancestorOf(Z,Y). % V1

ancestorOf(X,Y) :- parentOf(Z,Y), ancestorOf(X,Z). % V2

ancestorOf(X,Y) :- ancestorOf(X,Z), ancestorOf(Z,Y). % V3

The back-chaining goal of ancestorOf(sam, sue) will ultimately

reduce to a set of parentOf(_,_) goals

V1 parentOf(sam,Z) — find child of sam searching downwards

V2 parentOf(Z,sue) — find parent of sue searching upwards

V3 parentOf(_,_) — find a parent relation searching in both
directions

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 19 / 25

Algorithm Design

Consider Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, . . .

Version 1:
fibo(0, 1).

fibo(1, 1).

fibo(M,X) :- N1 is M-1, fibo(N1,Y),

N2 is M-2, fibo(N2,Z), X is Y+Z.

This requires an exponential number of + subgoals.

Version 2:
fibo(N, X) :- f(N, 1, 0, X).

f(0, C, P, C).

f(M, C, P, X) :- N is M-1, S is P+C, f(N, S, C, X).

This requires a linear number of + subgoals.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 20 / 25

Ordering Goals

Consider:
americanCousinOf(X,Y) :- american(X), cousinOf(X,Y).

Logically, rearranging the subgoals on RHS makes no difference.
Pragmatically, though...

If asking americanCousinOf(fred, sally) , we are fine either way.

If asking americanCousinOf(X, sally) , the difference is between

find cousin of sally , check if American

an American, check if sally ’s cousin

So: order goals sensibly. Generate cousins, test for American.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 21 / 25

Commit

Usually need to allow for backtracking in goals, as in
americanCousinOf(X,Y) :- cousinOf(X,Y), american(X).

Sometimes, want to prevent backtracking — i.e., commit
In certain application, may need a clause like
goal :- test, subgoal.

where the first subgoal test may serve as a guard for the subgoal
subgoal , i.e., to prove goal goal , check if the rule is even

applicable by proving test , and if so, then commit to subgoal as

the only way of achieving goal .

The cut meta-operator ! cuts off all backtracking for goal at the
point where it appears.
goal :- test, !, subgoal.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 22 / 25

If–Then–Else

At times, a useful pattern:

goal :- condition, !, case1.

goal :- case2.

To achieve goal : if condition , commit to case1 , else use case2 .

Example:
Instead of laboriously writing two mutually-exclusive conditions

expt(A,N,X) :- even(N), ...

expt(A,N,X) :- odd(N), ...

use a single condition with an “else”:

expt(A,N,X) :- N=0, !, X=1.

expt(A,N,X) :- even(N), !, ... /* for even numbers */

expt(A,N,X) :- ... /* for odd numbers */

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 23 / 25

Controlling Backtracking using !

Consider solving the goal like

ancestorOf(jane,billy), male(jane)

parentOf(jane,billy), male(jane)

male(jane)

Fails

parentOf(Z,billy), ancestorOf(jane,Z), male(jane)

Eventually fails

The goal here should really be
ancestorOf(jane, billy), !, male(jane)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 24 / 25

End of Lecture

Next time: Hopefully, only one more lecture on Prolog semantics,
features, and tricks, and then Search

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 8 October 7, 2020 25 / 25

