EECS 3401 — Al and Logic Prog. — Lecture 8

Adapted from slides of Brachman & Levesque (2005)

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

October 7, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8

October 7, 2020

1/

25

Reasoning with Horn Clauses

@ Today: Reasoning with Horn Clauses
@ Also today: Procedural Control of Reasoning

@ Required reading: Russell & Norvig, Chapter 9; Clocksin & Mellish
Chapters 4 and 10

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 2/25

Reasoning with Horn Clauses

Recall:
@ A clause is a disjunction of literals: (p, g, r, —s)
@ A Horn clause: same but at most one positive literal is allowed:
(p,—q,—r,—s)
@ Think of Horn clauses as implications

g1V V...Vog,Vp Horn clause
(G ANGA...ANgn) — P same, as an implication
p:- 9.1, 9.2, ... , q.n. same, as a Prolog rule

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 3/25

Horn Clauses

Some more terminology:

o Positive (definite) clause: has exactly one positive literal
(_'q17 —q2,...,7qn, p)
o Negative clause: no positive literals

(ﬂql) g2, .-, _‘CIn)

The empty clause {} is negative

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 4/25

Resolution with Horn Clauses

@ When resolving Horn clauses, there are only two possibilities:

(Positive) (Negative) (Positive) (Positive)

\/\/

(Negative) (Positive)

@ It is possible to rearrange a resolution proof of a negative clause so
that all new derived clauses are negative:

(ﬁaaﬁqu P) (ﬁb’ q) (ﬁc7 ﬁp) (ﬁavﬁqvp)

T~

(_'C7 _'P) (p,—|a,—|b) = (—|a,—|c,—|q) (_'ba q)

\/

(ma,=b,~c) to eliminate (—a, ~b, —c)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020

Further Restricting Resolution

It is also possible to perform derivations in such a way that each derived
clause is a resolvent of a previously-derived negative clause and some
positive clause from the knowledge base

@ Since each derived clause is negative, one parent must be positive
(from KB) and one parent must be negative

@ Chain backwards from the final derived (negative) clause until both
parents are from the original set of clauses

@ Eliminate all other clauses not on this direct path

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 6/25

SLD Resolution

S Selected literals
L Linear form

D Definite clauses

An SLD derivation of a clause ¢ from a set of clauses KB is a sequence
of clauses ¢, ¢, ..., ¢, such that ¢, = ¢ and

Q ¢ €KB

@ ¢y is a resolvent of ¢; and a clause in KB

Notation: KB g1 p ¢

An SLD derivation is just a special form of a resolution derivation where
we also leave out the KB clauses (except ci)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 7/25

SLD Resolution

@ In general, SLD Resolution is less powerful than regular resolution
o Consider KB:

(p,q)
(p,—q)
(=p, q)
(=p,—q)

States “p and g are identical and mutex at the same time”

e Fact: KBF (), but KB t/s1p ()
Because to get () we need to resolve (p) with (—=p) or (gq) with (—q) ,
but the KB itself doesn’t contain unit clauses. Thus, a unit clause
with a positive literal needs to be derived, which is not allowed by
SLD.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 8/25

Completeness of SLD

For Horn clauses, SLD Resolution is sufficient.

SLD Resolution is refutation-complete for Horn clauses.
Let KB be a set of Horn clauses.

KBtE () iff KBtsip()

So, KB is unsatisfiable iff KB -sip (). This considerably simplifies the
search for derivations.
@ Note: in an SLD derivation with a Horn KB, each clause in
c1,C, ..., Ch will be negative.
@ Thus, KB must contain at least one negative clause ¢;, and this will
be the only negative clause from KB used.
o Typically, KB is a collection of positive Horn clauses, and the
negation of the query is the negative clause

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 9/25

Show that KB U {—girl} is unsatisfiable:

KB

(firstGrade)
(—firstGrade, child)
(—child, =male, boy)
(—kindergarten, child)
(—child, —female, girl)
(female)

SLD derivation: Goal tree:
(_'girl) goal
‘ girl
—child, —~femal,
(Fehild, female) .ﬂfemale
‘ child solved
(—child) |
‘ firstGrade
(—firstGrade) solved

|
0

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo

EECS 3401 Lecture 8

October 7, 2020 10/25

Horn clauses form the basis of Prolog. Consider:

append([], Z, Z).
append([E1|R1], Y, [El|Rest]) :- append(R1, Y, Rest).

Observe/recall:

@ [] is a constant

e [a, b, c] is really the term cons(a, cons(b, cons(c, [1)))*

@ The second rule is actually the clause
(— append(R1, Y, Rest) , append([E1|R1], Y, [E1|Restl)),
or, expressing lists as terms,
(—append(R1, Y, Rest), append(cons(E1, R1), Y, cons(E1, Rest)))

'Here, cons stands in for the functor '[|1' for clarity
Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 11/25

(append(1 ,Z, 7))
(—append(R1, Y, Rest), append(cons(E1, R1), Y, cons(E1, Rest)))

What is the result of append([a,b], [c], X) ?

append(cons(a, cons(b, [1)),cons(c, [1),X)
El=aRl=cons(b, 1) | ¥ =cons(c, 0),X = cons(E1,Rest)
append(cons(b, [1),cons(c, [1), Rest)
El = bRl = [] ‘ Y’ = cons(c, [1), Rest = cons(E1’, Rest')
append([1 , cons(c, [1), Rest’)
Rest’ = cons(c, [1)

Goal succeeds with X = cons(a, cons(b, cons(c, [1))), i.e., [a, b, c].

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 12 /25

Back-chaining Procedure

Prolog uses the following back-chaining procedure to decide whether a
sequence of goals is true.

solve(qi, qo. an):
if n =0 then

return Yes
for all d € KB do
if dis (q1,—p1,p2,-..,pm) then
if solve(p1,p2,...,Pm;G2.-...qn) = Yes then
return Yes
return No

This is depth-first, left-right back-chaining.
@ Depth-first because attempt to prove p; before trying g;
o Left-right because proves q; in order, i =1,2,3,...

@ Back-chaining because search from goal g to KB facts p

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020

Problems with Back-chaining

@ Can enter an infinite loop
Clause (p, —p) says nothing of use (it's a tautology), but corresponds
to a prolog program p :- p.

o Inefficient
Consider 2n atoms po, ..., Pp—1,90, - --,qn—1 and 4(n — 1) clauses

(mpi=1,pi), (—gi=1,pi), (—Pi-1,9i), (—qi-1,qi)

The proof of goal p, eventually fails after 2% steps.
Pk

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 14 /25

Forward-chaining

Forward-chaining is a simple procedure to determine if Horn KB |= ¢

@ Main idea: mark atoms as solved

loop
if g is marked as solved then
return Yes
for all (p1,—p2,...,—pm) € KB do
if po,...,pm are marked as solved, but p; is not then
mark p; as solved
else
return No

o Not goal-oriented, so not always desirable

@ Can, in principle, run in linear time

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020

First-Order Undecidability

Even with just Horn clauses, in the first-order case we still have the
possibility of generating an infinite branch of resolvents

(—lessThan(0,0))

X=0,Y=0
KB: (—lessThan(succ(X),Y), lessThan(1.0
lessThan(X. Y)) (—lessThan(1,0))
‘ X'=1,Y'=0
Query: lessThan(0,0) (—lessThan(2,0))
X”:2, Yl/:0

@ As with regular resolution, there isn't and cannot be a general way to
detect when this will happen.

@ Satisfiability of FOL Horn theories is undecidable

@ Best we can do is to give control of the deduction to the user

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 16 /25

Procedural Control of Reasoning

@ Theorem proving (e.g. resolution) is a general domain-independent
method of reasoning

@ Not tailored to a specific domain or application — treats all
knowledge the same

@ With some applications, though, there are glaringly obvious shortcuts
to be exploited

@ Want to be able to guide the theorem-proving procedure

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 17 /25

Facts & Rules

(Recall from Prolog) When working with Horn clauses, we can separate
them into facts and rules

mother0f (jane, billy).
fatherOf (john, billy).
fatherOf (sam, john).

/* specific facts */

parent0f (X, Y) :- motherOf(X, Y). /* untversal rules */
parent0f (X, Y) :- fatherOf(X, Y).

child0f (X, Y) :- parentO0f(Y, X).

ancestor0f (X, Y) :- /* and so on */

Both are retrieved by unification matching.

Same rules can be formulated in different ways to guide the proving
procedure.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8

October 7, 2020 18 /25

Rule Formulation: Example

Consider ancestor0f defined in terms of parentOf .

Base case:
ancestor0f (X, Y) :- parentOf(X, Y).

Recursive case variants:

ancestor0f (X,Y) :- parent0f(X,Z), ancestor0f(Z,Y). 7 Vi
ancestor0f (X,Y) :- parent0f(Z,Y), ancestorOf(X,Z). 72
ancestor0f(X,Y) :- ancestor0f(X,Z), ancestor0f(Z,Y). 7/ V3

The back-chaining goal of ancestor0f (sam, sue) will ultimately
reduce to a set of parentO0f(_,_) goals

V1 parentOf (sam,Z) — find child of sam searching downwards
V2 parent0f (Z,sue) — find parent of sue searching upwards

V3 parent0f(_,_) — find a parent relation searching in both
directions

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020

Algorithm Design

Consider Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, ...
Version 1:
fibo (0, 1).
fibo(l, 1).
fibo(M,X) :- N1 is M-1, fibo(N1,Y),
N2 is M-2, fibo(N2,Z), X is Y+Z.

This requires an exponential number of + subgoals.

Version 2:

fibo(N, X) :- £(N, 1, 0, X).

f(0, C, P, C).

f(M, C, P, X) :- N is M-1, S is P+C, f(N, S, C, X).

This requires a linear number of + subgoals.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020

Ordering Goals

Consider:

americanCousinOf (X,Y) :- american(X), cousinOf(X,Y).
Logically, rearranging the subgoals on RHS makes no difference.
Pragmatically, though...

o If asking americanCousinOf (fred, sally) , we are fine either way.

o If asking americanCousinOf (X, sally) , the difference is between

e find cousin of sally, check if American

e an American, check if sally 's cousin

@ So: order goals sensibly. Generate cousins, test for American.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8

October 7, 2020 21/25

@ Usually need to allow for backtracking in goals, as in
americanCousinOf (X,Y) :- cousinOf(X,Y), american(X).

@ Sometimes, want to prevent backtracking — i.e., commit
In certain application, may need a clause like
goal :- test, subgoal.
where the first subgoal test may serve as a guard for the subgoal
subgoal , i.e., to prove goal goal , check if the rule is even
applicable by proving test , and if so, then commit to subgoal as
the only way of achieving goal .

@ The cut meta-operator ! cuts off all backtracking for goal at the
point where it appears.
goal :- test, !, subgoal.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 22 /25

If—=Then—Else

At times, a useful pattern:

goal :- condition, !, casel.
goal :- case2.

To achieve goal : if condition, commit to casel, else use case?2.

Example:
Instead of laboriously writing two mutually-exclusive conditions

expt (A,N,X) :- even(N),
expt (A,N,X) :- odd(N),

use a single condition with an “else”:

expt (A,N,X) :- N=0, !, X=1.

expt (A,N,X) :- even(N), !, ... /* for even numbers */
expt (A,N,X) :- ... /* for odd numbers */

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020

Controlling Backtracking using !

Consider solving the goal like

ancestor0f (jane,billy), male(jane)

/
parentOf (jane,billy), male(jane)

male(jane)

\
Fails

parent0f(Z,billy), ancestor0f(jane,Z), male(jane)

|
Eventually fails

The goal here should really be
ancestor0f (jane, billy), !, male(jane)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020 24 /25

End of Lecture

@ Next time: Hopefully, only one more lecture on Prolog semantics,
features, and tricks, and then Search

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 8 October 7, 2020

