EECS 3401 — Al and Logic Prog. — Lecture 7

Adapted from slides of Prof. Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

October 5, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7

October 5, 2020

1/

32

Resultion: Unification

@ Today: Unification in FOL Resolution
@ Required reading: Russell & Norvig, Chapters 9.1, 9.2, 9.5

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 2/32

@ Ground clause = a clause with no variables

e Finding a pair of complimentary literals {p, ~p} is trivial in ground
clauses — syntactical identity suffices

@ But what if we have variables in the clauses?

Can these clauses be resolved?

(p(john), q(fred), r(X))
(=p(Y), r(susan), r(Y))

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 3/32

@ Recall: in clausal form, all variables are universally quantified. So,
implicitly, the clause

(=p(Y), r(susan), r(Y))
represents all clauses like

(—p(fred),r(susan), r(fred))
(—p(john),r(susan), r(john))

@ Thus, there is a “specialization” of this clause that can be resolved
with (p(john), q(fred), r(X)).

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 4/32

@ We want to be able to match conflicting literals, even if they have
variables.

@ This matching process automatically determines whether or not there
is a “specialization” that matches.

@ Don’t want to over-specialize!

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7

October 5, 2020

Consider:

(=p(X), s(X), q(fred))
(p(Y),r(Y))

Possible resolvants:
e (s(john), q(fred), r(john)) {Y =X, X = john}
o (s(sally), q(fred), r(sally)) {Y =X,X =sally}
o (s(X), qlfred), r(X)) {¥ = X}

@ The last one is the most general, and the first two are specializations
of it

@ We want to keep the most general clause so that we can use it in
future resolution steps

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 6/32

@ Unification is a mechanism for finding a “most general” matching

But first,
@ A substitution is a finite set of equations of the form

(V=1)

where V is a variable and t is a term not containing V. (It might
contain other variables)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 7/32

Substitutions

@ We can apply a substitution ¢ to a formula ¢ to obtain a new
formula ¢o by simultaneously replacing every variable mentioned in
the left-hand side of the substitution by the right-hand side.

Example:

p(X.g(Y,2))IX =Y, Y =1f(a)] = p(Y,g(f(a),2))

@ Note that the substitutions are not applied sequentially, i.e., the first
Y is not subsequently replaced by f(a).

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 8/32

Substitutions

We can also compose two substitutions # and ¢ to obtain a new
substitution fo.

LeteZ{X]_:Sl,XQZSQ,...,Xm:Sm}
O':{Yl:tl,YQZtg,...,Yk:tk}

@ Apply o to each right-hand side of # and then add all of the
equations of ¢.

SZ{Xl :Slo',XQZSQO',...,Xm:SmO',
Yi=t,Yo=1t,..., Y=t}

@ Delete from S all identities of the form V =V
© Delete all equations Y; = s; where Y; is equal to one of the X; in 6

The resulting set S is the composition 6o.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 9/32

Composition Example

0 ={X=F(Y),Y=2Z}, o={X=aY=bZ=Y}

S={X=f(Y)o,Y =Z0,X=a,Y=bZ=Y}

={X=F(b),Y=Y,X=a,Y=bZ=Y}

={X=F(b),Y=Y,X=a,Y=bZ=Y}
—{X=F(b),X=a,Y=b,Z=Y}

0o ={X=F(b),Y=b,Z=Y}

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 10/32

Substitutions

@ The empty substitution £ = {} is also a legal substitution, and it act
as an identity under composition

@ More importantly, substitutions are associative when applied to
formulas:

(¢0)o = ¢(00)

@ Composition is simply a way of converting the sequential application
of a series of substitutions to a single simultaneous substitution

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 11/32

@ A unifier of two formulas ¢ and ¢ is a substitution o that makes ¢
and v syntactically identical

@ Not all formulas can be unified — substitutions only affect variables

Example: the formulas p(f(X),a) and p(Y,f(w)) cannot be unified,
since there is no way of making a = f(w) with a substitution.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 12 /32

Most General Unifier

@ A substitution o if two formulas ¢ and 1) is a Most General Unifier
(MGU) if
© o is a unifier
@ For every other unifier 6 of ¢ and 1 there must exist a third
substitution A such that

0=oc

In other words, o is a MGU if every other unifier is “more specialized”
that 0. The MGU of a pair of formulas ¢ and ¥ is unique up to
renaming.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 13 /32

Most General Unifier

Consider two formulas:
p(f(X),2), p(Y,2)
e 0 ={Y=f(a),X=a,Z=a} is a unifier:

p(f(X), Z)
p(Y,a)

o =
o =

o
-

~—
L

SN—r
L

But it is not a MGU.
o §={Y=f(X),Z=a} is a MGU:

p(f(X), Z)0 = p(f(X),a)
p(Y,a)0 = p(f(X),a)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 14 /32

Most General Unifier

o Note: 0 = O\ where A = {X=a}

o={Y=f(a),X=a,Z=a}
0= {Y=Ff(X),Z=a} MGU
A= {X=a}

ON={Y=f(a),X=a,Z=a}

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 15 /32

Most General Unifier

@ The MGU is the “least specialized” way of making clauses with
universal variables match (syntactically)

@ We can find MGUs mechanically

o Intuitively, we line up two formulas and find the first sub-expression
where they disagree. The pair of sub-expressions where they first
disagree is called the disagreement set

@ The algorithm works by successively fixing disagreements sets until
the two formulas become syntactically identical

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 16 /32

Most General Unifier

To find the MGU of two formulas ¢ and 1:
Q@ k=0;00={}, So={9, ¢}

@ If S, contains an identical pair of formulas, then stop and return o
— this is the MGU

© Else, find the disagreement set Dy = {e1, &2} of Sk

© If e is a variable V and e, is a term t not containing V (or
vice-versa), then let

ok+1 = ox{V =t} (Compose subst.)
Sk+1 = Sk{V=t} (Apply subst.)

and go back to 2.
© Else: stop. Formulas ¢ and 1 cannot be unified.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020

MGU Example 1

So = {p(f(a),g(X))ip(Y,Y)} k=0
oo = {}

Do = {f(a), Y} Y =£(a)
o1 = ool Y =F(a)} = {Y=F(a)} k=1

51 = {p(f(a), e(X){Y =F(a)}:
p(Y, Y){Y=f(a)}}
= {p(f(a), &(X)), p(f(a), f(a))}

D1 = {g(X). f(a)} stop

Vitaliy Batusov vl (o) EECS 3401 Lecture 7 October 5, 2020 18 /32

MGU Example 2

So = {p(a, X, h(g(Z2))); p(Z, h(Y), h(Y))} k=0
oo ={}

Do = {a, Z} Z:a
0'1:0'0{223}:{2:3} k=1
51 ={p(a, X, h(g(a))); p(a, h(Y), h(Y))}

Dy = {X,h(Y)} X=h(Y)
o2 = o {X=h(Y)} = {Z=a,X=h(Y)} k=2
S2 = {p(a, h(Y), h(g(a))); p(a, h(Y), h(Y))}

D, = {g(a), Y} Y=¢(a)
o3 = 02{Y =g(a)} = {Z=a,X=h(g(a)), Y =g(a)} k=3

S = {p(a, h(g(a)), h(g(a))): p(a; h(g(a)), h(g(a)))}

Identical formulas; stop and return o3 as the MGU

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020

MGU Example 3

So = {p(X, X); p(Y,f(Y))} k=0
oo = {}

Do = {X, Y} X=Y
o1 =o0p{X=Y}={X=Y} k=1
S1=A{p(Y,Y)ip(Y,f(Y))}

Dy ={Y,f(Y)} Y=1(Y)

Same variable on both sides

Stop; cannot be unified

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 20/32

Non-Ground Resolution

Basic resolution step for non-ground clauses

o If we have two clauses

(p7 q17q27"'7qk) and (_'ma rlar27"'7rn)

@ and if there exists a MGU ¢ for p and m,

@ we infer the new clause

(g10,...,qk0, 10, ..., roO)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020

Example of Non-Ground Resolution

@ Clauses:

(p(X), a(g(X))) and (r(a),q(2),~p(a))

e 0 ={X=a}

@ Resolve:

R[1a,2c{X =a}(a(g(a)), r(a), a(2))

The notation here is very useful. R[-,-] means a resolution step; 1a means
the first (a-th) literal in the first (1-st) clause; 2c means the third (c-th)
literal in the second clause. {X =a} is the substitution applied to make
the clashing literals identical.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 22/32

Resolution Proof Example

Consider:

Some patients like all doctors. No patient likes any quack. Therefore, no
doctor is a quack.

Resolution Step 1: pick symbols to represent these assertions
e p(X) — X is a patient
e d(X)— X is a doctor
e g(X) — X is a quack
e /(X,Y)— X likes Y

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 23/32

Resolution Proof Example

Resolution Step 2: Convert each assertion to a first-order formula

Some patients like all doctors

IX(p(X) AVY(d(Y) = I(X,Y))) F1

No patient likes any quack

YXYY (p(X) A q(Y) = =I(X, Y)) F2

Therefore, no doctor is a quack

—3X(d(X) A q(X)) Query

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020

Resolution Proof Example

Resolution Step 3: Convert to Clausal Form

(p(a)), (=d(X), I(a, X)) F1
(=p(Y),~q(2),-I(Y, 2)) F2
(=d(V), ~q(V)) Query
(d(b)), (q(b)) Negation of Query

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 25/32

Resolution Proof Example

Resolution Step 4: Derive an empty clause

p(a) (1)
(=d(X), I(a, X)) (2)
(=p(Y),=q(2),-I(Y, 2)) (3)
d(b) (4)
q(b) (5)

R[1,3a{Y =a}(~q(2),~l(a, Z))
R[2a,4]{X =b}/(a, b)

R[5, 6a]{Z=b}~I(a, b)
R[7,8]{}()

—~ —~
0 ~N O
~— ~— —

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 26 /32

Answer Extraction

@ The previous example shows how we can answer true-false questions.
With a bit more effort we can also answer “fill-in-the-blanks”
questions

@ As in Prolog, we use free variables in the query where we want the
fill-in-the-blanks. We simply need to keep track of the binding that
these variables received in proving the query.

o parent(art, jon) — is art one of jon's parents? (Yes/No)
o parent(X,jon) — who is one of jon's parents? (Fill-in-the-blanks)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 27/32

Answer Extraction

@ A simple bookkeeping device is to use a predicate symbol
answer(X,Y,...) to keep track of the bindings automatically

e To answer the query parent(X,jon), we construct the clause
(—parent(X, jon), answer(X))

@ Now we perform resolution until we obtain a clause consisting of
only answer literals. (Previously we stopped at empty clauses)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020

Answer Extraction Example 1

Q father(art, jon)

@ father(bob, kim)

@ (—father(Y,Z), parent(Y, Z))
Q (—parent(X,jon), answer(X))

Proof:
Q@ RI[4,3bl{Y =X, Z=jon}(—father(X, jon), answer(X))

Q@ R[5,1]{X=art}(answer(art))
And we have an explicit answer.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 29/32

Answer Extraction Example 2

© (father(art, jon), father(bob, jon))
@ father(bob, kim)

@ (—father(Y,Z), parent(Y,Z))

Q (—parent(X,jon), answer(X))

Proof:
Q@ RI[4,3bl{Y =X, Z=jon}(—father(X, jon), answer(X))
@ RI[5,1al{ X =art}(father(bob, jon), answer(art))
@ R[6,3b]{Y =bob, Z=jon}(parent(bob, jon), answer(art))

Q R[7,4]{X =bob}(answer(bob), answer(art))
A disjunctive answer: either bob or art is a parent of jon.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020

The Prolog search mechanism (without not and !) is simply an
instance of resolution, except

o Clauses are Horn (only one positive literal)

@ Prolog uses a specific depth-first strategy when searching for a proof
(rules are used first-mentioned-first-used, literals are resolved away
left-to-right)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020 31/32

End of Lecture

@ Next time: SLDNF Resolution

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 7 October 5, 2020

