
EECS 3401 — AI and Logic Prog. — Lecture 7
Adapted from slides of Prof. Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

October 5, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 1 / 32



Resultion: Unification

Today: Unification in FOL Resolution

Required reading: Russell & Norvig, Chapters 9.1, 9.2, 9.5

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 2 / 32



Unification

Ground clause = a clause with no variables

Finding a pair of complimentary literals {p,¬p} is trivial in ground
clauses — syntactical identity suffices

But what if we have variables in the clauses?

Can these clauses be resolved?

(p(john), q(fred), r(X ))

(¬p(Y ), r(susan), r(Y ))

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 3 / 32



Unification

Recall: in clausal form, all variables are universally quantified. So,
implicitly, the clause

(¬p(Y ), r(susan), r(Y ))

represents all clauses like

(¬p(fred),r(susan), r(fred))

(¬p(john),r(susan), r(john))

. . .

Thus, there is a “specialization” of this clause that can be resolved
with (p(john), q(fred), r(X )).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 4 / 32



Unification

We want to be able to match conflicting literals, even if they have
variables.

This matching process automatically determines whether or not there
is a “specialization” that matches.

Don’t want to over-specialize!

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 5 / 32



Consider:

(¬p(X ), s(X ), q(fred))

(p(Y ), r(Y ))

Possible resolvants:

(s(john), q(fred), r(john)) {Y = X ,X = john}
(s(sally), q(fred), r(sally)) {Y = X ,X = sally}
(s(X ), q(fred), r(X )) {Y = X}

The last one is the most general, and the first two are specializations
of it

We want to keep the most general clause so that we can use it in
future resolution steps

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 6 / 32



Unification

Unification is a mechanism for finding a “most general” matching

But first,

A substitution is a finite set of equations of the form

(V = t)

where V is a variable and t is a term not containing V . (It might
contain other variables)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 7 / 32



Substitutions

We can apply a substitution σ to a formula φ to obtain a new
formula φσ by simultaneously replacing every variable mentioned in
the left-hand side of the substitution by the right-hand side.

Example:

p(X , g(Y ,Z ))[X = Y ,Y = f (a)] ⇒ p(Y , g(f (a),Z ))

Note that the substitutions are not applied sequentially, i.e., the first
Y is not subsequently replaced by f (a).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 8 / 32



Substitutions

We can also compose two substitutions θ and σ to obtain a new
substitution θσ.

Let θ = {X1 = s1,X2 = s2, . . . ,Xm = sm}
σ = {Y1 = t1,Y2 = t2, . . . ,Yk = tk}

1 Apply σ to each right-hand side of θ and then add all of the
equations of σ.

S = {X1 = s1σ,X2 = s2σ, . . . ,Xm = smσ,

Y1 = t1,Y2 = t2, . . . ,Yk = tk}

2 Delete from S all identities of the form V = V

3 Delete all equations Yi = si where Yi is equal to one of the Xj in θ

The resulting set S is the composition θσ.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 9 / 32



Composition Example

θ = {X = f (Y ),Y =Z}, σ = {X =a,Y =b,Z =Y }

S ={X = f (Y )σ,Y = Zσ,X =a,Y =b,Z =Y }
={X = f (b),Y =Y ,X =a,Y =b,Z =Y }
={X = f (b),Y =Y ,X =a,Y =b,Z =Y }
={X = f (b),X=a,Y =b,Z =Y }

θσ ={X = f (b),Y =b,Z =Y }

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 10 / 32



Substitutions

The empty substitution ε = {} is also a legal substitution, and it act
as an identity under composition

More importantly, substitutions are associative when applied to
formulas:

(φθ)σ = φ(θσ)

Composition is simply a way of converting the sequential application
of a series of substitutions to a single simultaneous substitution

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 11 / 32



Unifiers

A unifier of two formulas φ and ψ is a substitution σ that makes φ
and ψ syntactically identical

Not all formulas can be unified — substitutions only affect variables

Example: the formulas p(f (X ), a) and p(Y , f (w)) cannot be unified,
since there is no way of making a = f (w) with a substitution.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 12 / 32



Most General Unifier

A substitution σ if two formulas φ and ψ is a Most General Unifier
(MGU) if

1 σ is a unifier
2 For every other unifier θ of φ and ψ there must exist a third

substitution λ such that

θ = σλ.

In other words, σ is a MGU if every other unifier is “more specialized”
that σ. The MGU of a pair of formulas φ and ψ is unique up to
renaming.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 13 / 32



Most General Unifier

Consider two formulas:

p(f (X ),Z ), p(Y , a)

σ = {Y = f (a),X =a,Z =a} is a unifier:

p(f (X ),Z )σ = p(f (a), a)

p(Y , a)σ = p(f (a), a)

But it is not a MGU.

θ = {Y = f (X ),Z =a} is a MGU:

p(f (X ),Z )θ = p(f (X ), a)

p(Y , a)θ = p(f (X ), a)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 14 / 32



Most General Unifier

Note: σ = θλ where λ = {X =a}

σ = {Y = f (a),X =a,Z =a}
θ = {Y = f (X ),Z =a} MGU

λ = {X =a}

θλ = {Y = f (a),X =a,Z =a}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 15 / 32



Most General Unifier

The MGU is the “least specialized” way of making clauses with
universal variables match (syntactically)

We can find MGUs mechanically

Intuitively, we line up two formulas and find the first sub-expression
where they disagree. The pair of sub-expressions where they first
disagree is called the disagreement set

The algorithm works by successively fixing disagreements sets until
the two formulas become syntactically identical

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 16 / 32



Most General Unifier

To find the MGU of two formulas φ and ψ:

1 k = 0; σ0 = {}, S0 = {φ, ψ}
2 If Sk contains an identical pair of formulas, then stop and return σk

— this is the MGU

3 Else, find the disagreement set Dk = {e1, e2} of Sk
4 If e1 is a variable V and e2 is a term t not containing V (or

vice-versa), then let

σk+1 = σk{V = t} (Compose subst.)

Sk+1 = Sk{V = t} (Apply subst.)

and go back to 2.

5 Else: stop. Formulas φ and ψ cannot be unified.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 17 / 32



MGU Example 1

S0 = {p(f (a), g(X )); p(Y ,Y )} k = 0

σ0 = {}
D0 = {f (a),Y } Y = f (a)

σ1 = σ0{Y = f (a)} = {Y = f (a)} k = 1

S1 = {p(f (a), g(X )){Y = f (a)};
p(Y ,Y ){Y = f (a)}}

= {p(f (a), g(X )), p(f (a), f (a))}

D1 = {g(X ), f (a)} stop

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 18 / 32



MGU Example 2

S0 = {p(a,X , h(g(Z))); p(Z , h(Y ), h(Y ))} k = 0

σ0 = {}
D0 = {a,Z} Z =a

σ1 = σ0{Z =a} = {Z =a} k = 1

S1 = {p(a,X , h(g(a))); p(a, h(Y ), h(Y ))}
D1 = {X , h(Y )} X =h(Y )

σ2 = σ1{X =h(Y )} = {Z =a,X =h(Y )} k = 2

S2 = {p(a, h(Y ), h(g(a))); p(a, h(Y ), h(Y ))}
D2 = {g(a),Y } Y =g(a)

σ3 = σ2{Y =g(a)} = {Z =a,X =h(g(a)),Y =g(a)} k = 3

S3 = {p(a, h(g(a)), h(g(a))); p(a, h(g(a)), h(g(a)))}
Identical formulas; stop and return σ3 as the MGU

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 19 / 32



MGU Example 3

S0 = {p(X ,X ); p(Y , f (Y ))} k = 0

σ0 = {}
D0 = {X ,Y } X =Y

σ1 = σ0{X =Y } = {X =Y } k = 1

S1 = {p(Y ,Y ); p(Y , f (Y ))}
D1 = {Y , f (Y )} Y = f (Y )

Same variable on both sides

Stop; cannot be unified

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 20 / 32



Non-Ground Resolution

Basic resolution step for non-ground clauses

If we have two clauses

(p, q1, q2, . . . , qk) and (¬m, r1, r2, . . . , rn)

and if there exists a MGU σ for p and m,

we infer the new clause

(q1σ, . . . , qkσ, r1σ, . . . , rnσ)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 21 / 32



Example of Non-Ground Resolution

Clauses:

(p(X ), q(g(X ))) and (r(a), q(Z ),¬p(a))

σ = {X =a}
Resolve:

R[1a, 2c]{X =a}(q(g(a)), r(a), q(Z ))

The notation here is very useful. R[·, ·] means a resolution step; 1a means
the first (a-th) literal in the first (1-st) clause; 2c means the third (c-th)
literal in the second clause. {X =a} is the substitution applied to make
the clashing literals identical.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 22 / 32



Resolution Proof Example

Consider:
Some patients like all doctors. No patient likes any quack. Therefore, no
doctor is a quack.

Resolution Step 1: pick symbols to represent these assertions

p(X ) — X is a patient

d(X ) — X is a doctor

q(X ) — X is a quack

l(X ,Y ) — X likes Y

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 23 / 32



Resolution Proof Example

Resolution Step 2: Convert each assertion to a first-order formula

Some patients like all doctors

∃X (p(X ) ∧ ∀Y (d(Y )→ l(X ,Y ))) F1

No patient likes any quack

∀X∀Y (p(X ) ∧ q(Y )→ ¬l(X ,Y )) F2

Therefore, no doctor is a quack

¬∃X (d(X ) ∧ q(X )) Query

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 24 / 32



Resolution Proof Example

Resolution Step 3: Convert to Clausal Form

(p(a)), (¬d(X ), l(a,X )) F1

(¬p(Y ),¬q(Z ),¬l(Y ,Z )) F2

(¬d(V ),¬q(V )) Query

(d(b)), (q(b)) Negation of Query

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 25 / 32



Resolution Proof Example

Resolution Step 4: Derive an empty clause

p(a) (1)

(¬d(X ), l(a,X )) (2)

(¬p(Y ),¬q(Z ),¬l(Y ,Z )) (3)

d(b) (4)

q(b) (5)

R[1, 3a]{Y =a}(¬q(Z ),¬l(a,Z )) (6)

R[2a, 4]{X =b}l(a, b) (7)

R[5, 6a]{Z =b}¬l(a, b) (8)

R[7, 8]{}()

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 26 / 32



Answer Extraction

The previous example shows how we can answer true-false questions.
With a bit more effort we can also answer “fill-in-the-blanks”
questions

As in Prolog, we use free variables in the query where we want the
fill-in-the-blanks. We simply need to keep track of the binding that
these variables received in proving the query.

parent(art, jon) — is art one of jon’s parents? (Yes/No)
parent(X , jon) — who is one of jon’s parents? (Fill-in-the-blanks)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 27 / 32



Answer Extraction

A simple bookkeeping device is to use a predicate symbol
answer(X ,Y , . . .) to keep track of the bindings automatically

To answer the query parent(X , jon), we construct the clause

(¬parent(X , jon), answer(X ))

Now we perform resolution until we obtain a clause consisting of
only answer literals. (Previously we stopped at empty clauses)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 28 / 32



Answer Extraction Example 1

1 father(art, jon)

2 father(bob, kim)

3 (¬father(Y ,Z ), parent(Y ,Z ))

4 (¬parent(X , jon), answer(X ))

Proof:

5 R[4, 3b]{Y =X ,Z = jon}(¬father(X , jon), answer(X ))

6 R[5, 1]{X =art}(answer(art))
And we have an explicit answer.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 29 / 32



Answer Extraction Example 2

1 (father(art, jon), father(bob, jon))

2 father(bob, kim)

3 (¬father(Y ,Z ), parent(Y ,Z ))

4 (¬parent(X , jon), answer(X ))

Proof:

5 R[4, 3b]{Y =X ,Z = jon}(¬father(X , jon), answer(X ))

6 R[5, 1a]{X =art}(father(bob, jon), answer(art))

7 R[6, 3b]{Y =bob,Z = jon}(parent(bob, jon), answer(art))

8 R[7, 4]{X =bob}(answer(bob), answer(art))
A disjunctive answer: either bob or art is a parent of jon.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 30 / 32



Prolog

The Prolog search mechanism (without not and ! ) is simply an
instance of resolution, except

Clauses are Horn (only one positive literal)

Prolog uses a specific depth-first strategy when searching for a proof
(rules are used first-mentioned-first-used, literals are resolved away
left-to-right)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 31 / 32



End of Lecture

Next time: SLDNF Resolution

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 7 October 5, 2020 32 / 32


