
EECS 3401 — AI and Logic Prog. — Lecture 6
Adapted from slides of Prof. Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

September 30, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 1 / 29



Inference in First-Order Logic

Today: Inference in First-Order Logic

Required reading: Russell & Norvig, Chapters 9.1, 9.2, 9.5

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 2 / 29



Computing Logical Consequences

Recap:

KB is a set of axioms

Reasoning = finding logical consequences of a KB

Logical consequence is a semantic notion
If a formula φ holds in every model of a KB, then KB |= φ

Can this be done mechanically/in code?

Yes. There are procedures for generating logical consequences

Called proof procedures

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 3 / 29



Proof Procedures

Proof procedures operate by simply manipulating formulas. They pay
no heed whatsoever to interpretations

Still, they respect the semantics of the interpretations!

We will develop a proof procedure for FOL called resolution
Prolog uses resolution, you’ve seen it work already.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 4 / 29



Properties of Proof Procedures

Notation: KB ` φ means that formula φ can be proved from the KB
(using some implicit proof procedure).

Generally speaking, what properties do we expect a proof procedure
to have?

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 5 / 29



Properties of Proof Procedures

Two fundamental properties:

Soundness If KB ` φ, then KB |= φ
(if we derive a formula from KB via the proof procedure, it
better be a logical consequence of KB)

Completeness If KB |= φ, then KB ` φ
(if a formula is a logical consequence, our proof procedure
should be capable of deriving it from KB)

Note: proof procedures are computable, but they might have very bad
complexity in the worst case. Completeness is not necessarily achievable in
practice

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 6 / 29



Resolution: Clausal Form

Resolution works with formulas in a particular form — clausal form

A literal is an atomic formula or the negation of an atomic formula
A literal: dog(fido). Also a literal: ¬cat(fido).

Not a literal: cat(fido) ∨ dog(fido) because contains disjunction

A clause is a disjunction of literals
A clause: cat(fido) ∨ dog(fido)
Also a clause: ¬owns(fido, fred) ∨ ¬dog(fido) ∨ person(fred)

Not a clause: ¬cat(fido) ∧ ¬dog(fido) because contains conjunction

Since a clause is always a disjunction, we can treat it as a
collection/tuple of literals:

(¬owns(fido, fred),¬dog(fido), person(fred))

A clausal theory is a conjunction of clauses

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 7 / 29



Clausal Form

A Horn clause is a clause with no more than one positive literal

A Horn clause: (¬owns(fido, fred),¬dog(fido), person(fred))

Not a Horn clause: (cat(fido), dog(fido))

Prolog programs are clausal theories. Every fact or rule in a Prolog
program is a Horn clause.

¬q1 ∨ ¬q2 ∨ . . . ∨ ¬qn ∨ p Horn clause

(q1 ∧ q2 ∧ . . . ∧ qn) → p same, as an implication

p :- q_1, q_2, ... , q_n. same, as a Prolog rule

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 8 / 29



Resolution Rule for Ground Clauses

Basic Principle of Resolution: From two clauses

(p, q1, q2, . . . , qk) and (¬p, r1, r2, . . . , rn),

infer the new clause

(q1, q2, . . . , qk , r1, r2, . . . , rn).

Example: from

(¬largerThan(clyde, cup),¬fitsIn(clyde, cup)) and (fitsIn(clyde, cup)),

infer the new clause

(¬largerThan(clyde, cup)).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 9 / 29



Resolution Proof: Forward Chaining

Logical consequences can be generated from the resolution rule in two
ways: Forward Chaining and Refutation.

Forward Chaining Inference: chain multiple resolution steps

Suppose we have a sequence of clauses C1,C2, . . . ,Ck

Suppose that each Ci is either in the KB or is the result of a
resolution step involving two prior clauses in the sequence

Then, we have that KB ` Ck

Forward chaining is sound, so we also have KB |= Ck

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 10 / 29



Resolution Proof: Refutation Proofs

Refutation Proofs: a proof by contradiction

Fact: KB |= φ iff KB ∧ ¬φ has no model (“unsatisfiable”)

Since resolution is sound, then if we can derive a contradiction from
KB ∧ ¬φ, we consider φ proved

A contradiction is the empty clause ()

A proof:

Suppose we have a sequence of clauses C1,C2, . . . ,Cm

Suppose that each Ci is either in the KB ∧ ¬φ or is the result of
resolving two prior clauses in the sequence

Suppose Cm is ()

Then KB ` φ
By soundness, KB |= φ.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 11 / 29



Resolution Proof Example: Forward Chaining

Knowledge Base: (in clausal form)1

(elephant(clyde), giraffe(clyde)) (1)

(¬elephant(clyde), likes(clyde, peanuts)) (2)

(¬giraffe(clyde), likes(clyde, leaves)) (3)

(¬likes(clyde, leaves)) (4)

Want to prove: likes(clyde, peanuts)

Using forward chaining:

Resolve (3) & (4), get new clause (5) = (¬giraffe(clyde))

Resole (5) & (1), get new clause (6) = (elephant(clyde))

Resolve (6) & (2), get desired conclusion (likes(clyde, peanuts))

1Reminder: A → B stands for ¬A ∨ B
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 12 / 29



Resolution Proof Example: Refutation

Knowledge Base:

(elephant(clyde), giraffe(clyde)) (1)

(¬elephant(clyde), likes(clyde, peanuts)) (2)

(¬giraffe(clyde), likes(clyde, leaves)) (3)

(¬likes(clyde, leaves)) (4)

Want to prove: likes(clyde, peanuts)

Using refutation:

Add negation of query to KB: (5) = ¬likes(clyde, peanuts)

Resolve (5) & (2), get (6) = (¬elephant(clyde))

Resolve (6) & (1), get (7) = (giraffe(clyde))

Resolve (7) & (3), get (8) = (likes(clyde, leaves))

Resolve (8) & (4), get the empty clause ()

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 13 / 29



Resolution Proofs

Proofs by refutation have the advantage that they are easier to find
— they are more focused on the particular conclusion we are trying to
reach

To develop a complete resolution proof procedure for First-Order
Logic, we need:

1 A way of converting a KB and the query φ into clausal form
[Today’s focus]

2 A way of extending resolution to work on formulas with variables
[unification! Will cover next Monday]

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 14 / 29



Conversion to Clausal Form

An 8-step procedure to convert a KB into clausal form:

1 Eliminate implications

2 Move negations inwards and simplify ¬¬q

3 Standardize variables

4 Skolemize

5 Convert to Prenex form

6 Distribute conjunctions over disjunctions

7 Flatten nested conjunctions and disjunctions

8 Convert to clauses

Will use this example to illustrate:

∀X

{
p(X ) →

[
∀Y
[
p(Y ) → p(f (X ,Y ))

]
∧ ¬
[
∀Y (¬q(X ,Y ) ∧ p(Y ))

]]}
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 15 / 29



Step 1: Eliminate Implications

Given:

∀X

{
p(X ) →

[
∀Y
[
p(Y ) → p(f (X ,Y ))

]
∧ ¬
[
∀Y (¬q(X ,Y ) ∧ p(Y ))

]]}

Eliminate implications: replace A → B with ¬A ∨ B

Obtain:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y )∨ p(f (X ,Y ))

]
∧ ¬
[
∀Y (¬q(X ,Y ) ∧ p(Y ))

]]}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 16 / 29



Step 2: Move Negation Inwards

Given:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧ ¬
[
∀Y (¬q(X ,Y ) ∧ p(Y ))

]]}

Move negation inwards and simplify double negations

¬(¬A) becomes A

¬(A ∧ B) becomes (¬A ∨ ¬B)

¬(A ∨ B) becomes (¬A ∧ ¬B)

¬∀X (A) becomes ∃X (¬A)

¬∃X (A) becomes ∀X (¬A)

Obtain:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
∃Y (q(X ,Y )∨¬p(Y ))

]]}
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 17 / 29



Step 3: Standardize Variables

Given:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
∃Y (q(X ,Y ) ∨ ¬p(Y ))

]]}

Rename variables so that each quantified variable is unique

Obtain:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
∃Z (q(X ,Z ) ∨ ¬p(Z ))

]]}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 18 / 29



Step 4: Skolemize

Given:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
∃Z (q(X ,Z ) ∨ ¬p(Z ))

]]}

“Skolemize”: remove all existential quantifiers ∃ by introducing new
function symbols in place of the formerly-quantified variables

Obtain:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
q(X , g(X )) ∨ ¬p(g(X ))

]]}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 19 / 29



Skolemization Explained

Consider an example:

∃Y (elephant(Y ) ∧ friendly(Y ))

This states that there is some individual (a binding for Y ) that is
both an elephant and friendly

To remove the existential quantifier, we invent a name for this entity,
let’s say a. This is a new constant symbol, not equal to any previous
constant symbols. We get a logically equivalent statement:

elephant(a) ∧ friendly(a)

This is saying exactly the same thing, since we know nothing about
this new constant apart from the fact that it exists and has to be
bound to some individual

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 20 / 29



Skolemization Explained

It is essential that the introduced symbol a is new. Otherwise, we
might know something about a from the KB

If the KB had something to say about the constant a, we would be
asserting more than the existential did about that individual(s) hiding
under the name Y

In the original quantified formula, we know nothing about the variable
Y except what was being asserted by the formula itself

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 21 / 29



Skolemization Explained

A less trivial example:

∀X∃Y (loves(X ,Y ))

This states that for every X there is some Y that loves X — could be
a different Y for each X

Replacing the existential by a new constant won’t work

∀X (loves(X , a))

because now there is one particular individual a loved by every X

To properly convert existential quantifiers which are inside the scope
of universal quantifiers, we must use functions and not just dumb
constants

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 22 / 29



Skolemization Explained

We must use a function which takes as an argument (i.e., depends
on) every universally quantified variable that scopes the existential

In our example, Y is inside the scope of ∀X (“X scopes Y ”), so we
must replace the existential Y by a function of X :

∀X (loves(X , g(X ))),

where g is a new function symbol.

Now, the formula asserts that for every X there is some individual (as
given by g(X )) that X loves. Since g is a new symbol, it could be
interpreted arbitrarily, so g(X ) could be different for each binding of
X .

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 23 / 29



Skolemization: Some More Examples

∀X∀Y ∀Z∃W . r(X ,Y ,Z ,W )

becomes

∀X∀Y ∀Z . r(X ,Y ,Z , h1(X ,Y ,Z ))

∀X∀Y ∃W . r(X ,Y , g(W ))

becomes

∀X∀Y . r(X ,Y , g(h2(X ,Y )))

∀X∀Y ∃W∀Z . r(X ,Y ,W ) ∧ q(Z ,W )

becomes

∀X∀Y ∀Z . r(X ,Y , h3(X ,Y )) ∧ q(Z , h3(X ,Y ))

∀X∀Y ∃W∀Z (r(X ,Y ,W ) ∧ q(Z ,W )) becomes
∀X∀Y ∀Z (r(X ,Y , h3(X ,Y )) ∧ q(Z , h3(X ,Y )))

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 24 / 29



Step 5: Convert to Prenex Normal Form

Given:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
q(X , g(X )) ∨ ¬p(g(X ))

]]}

Bring all quantifiers to the outside (front). At this point, we only have universals

left, and each quantifies a differently-named variable

Obtain:

∀X∀Y

{
¬p(X ) ∨

[[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
q(X , g(X )) ∨ ¬p(g(X ))

]]}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 25 / 29



Step 6: Conjunctions Over Disjunctions

Given:

∀X∀Y

{
¬p(X )∨

[[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
q(X , g(X )) ∨ ¬p(g(X ))

]]}

Apply the distributive law: A ∨ (B ∧ C ) becomes (A ∨ B) ∧ (A ∨ C )

Obtain:

∀X∀Y

{[
¬p(X )∨ (¬p(Y ) ∨ p(f (X ,Y )))

]
∧
[
¬p(X )∨ (q(X , g(X )) ∨ ¬p(g(X )))

]}

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 26 / 29



Step 7: Flatten

Given:

∀X∀Y

{[
¬p(X ) ∨ (¬p(Y ) ∨ p(f (X ,Y )))

]
∧
[
¬p(X ) ∨ (q(X , g(X )) ∨ ¬p(g(X )))

]}

Flatten nested conjunctions and disjunctions: (A ∨ (B ∨ C )) becomes
(A ∨ B ∨ C )

Obtain:

∀X∀Y

{[
¬p(X ) ∨ ¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
¬p(X ) ∨ q(X , g(X )) ∨ ¬p(g(X ))

]}
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 27 / 29



Step 8: Convert to Clauses

Given:

∀X∀Y

{[
¬p(X ) ∨ ¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
¬p(X ) ∨ q(X , g(X )) ∨ ¬p(g(X ))

]}

Remove quantifiers and break apart conjunctions (this is purely notational, we

are not changing the formula any more. The removed symbols become implicit)

Obtain:

¬p(X ) ∨ ¬p(Y ) ∨ p(f (X ,Y ))

¬p(X ) ∨ q(X , g(X )) ∨ ¬p(g(X ))

We are now in clausal form.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 28 / 29



End of Lecture

(¬p(X ),¬p(Y ), p(f (X ,Y )))

(¬p(X ), q(X , g(X )),¬p(g(X )))

Observe: we now have variables in the clauses!

Next lecture: how resolution handles this

(Unification)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 29 / 29


