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Inference in First-Order Logic

Today: Inference in First-Order Logic

Required reading: Russell & Norvig, Chapters 9.1, 9.2, 9.5
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Computing Logical Consequences

Recap:

KB is a set of axioms

Reasoning = finding logical consequences of a KB

Logical consequence is a semantic notion
If a formula φ holds in every model of a KB, then KB |= φ

Can this be done mechanically/in code?

Yes. There are procedures for generating logical consequences

Called proof procedures

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 3 / 29



Proof Procedures

Proof procedures operate by simply manipulating formulas. They pay
no heed whatsoever to interpretations

Still, they respect the semantics of the interpretations!

We will develop a proof procedure for FOL called resolution
Prolog uses resolution, you’ve seen it work already.
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Properties of Proof Procedures

Notation: KB ` φ means that formula φ can be proved from the KB
(using some implicit proof procedure).

Generally speaking, what properties do we expect a proof procedure
to have?
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Properties of Proof Procedures

Two fundamental properties:

Soundness If KB ` φ, then KB |= φ
(if we derive a formula from KB via the proof procedure, it
better be a logical consequence of KB)

Completeness If KB |= φ, then KB ` φ
(if a formula is a logical consequence, our proof procedure
should be capable of deriving it from KB)

Note: proof procedures are computable, but they might have very bad
complexity in the worst case. Completeness is not necessarily achievable in
practice
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Resolution: Clausal Form

Resolution works with formulas in a particular form — clausal form

A literal is an atomic formula or the negation of an atomic formula
A literal: dog(fido). Also a literal: ¬cat(fido).

Not a literal: cat(fido) ∨ dog(fido) because contains disjunction

A clause is a disjunction of literals
A clause: cat(fido) ∨ dog(fido)
Also a clause: ¬owns(fido, fred) ∨ ¬dog(fido) ∨ person(fred)

Not a clause: ¬cat(fido) ∧ ¬dog(fido) because contains conjunction

Since a clause is always a disjunction, we can treat it as a
collection/tuple of literals:

(¬owns(fido, fred),¬dog(fido), person(fred))

A clausal theory is a conjunction of clauses
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Clausal Form

A Horn clause is a clause with no more than one positive literal

A Horn clause: (¬owns(fido, fred),¬dog(fido), person(fred))

Not a Horn clause: (cat(fido), dog(fido))

Prolog programs are clausal theories. Every fact or rule in a Prolog
program is a Horn clause.

¬q1 ∨ ¬q2 ∨ . . . ∨ ¬qn ∨ p Horn clause

(q1 ∧ q2 ∧ . . . ∧ qn) → p same, as an implication

p :- q_1, q_2, ... , q_n. same, as a Prolog rule
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Resolution Rule for Ground Clauses

Basic Principle of Resolution: From two clauses

(p, q1, q2, . . . , qk) and (¬p, r1, r2, . . . , rn),

infer the new clause

(q1, q2, . . . , qk , r1, r2, . . . , rn).

Example: from

(¬largerThan(clyde, cup),¬fitsIn(clyde, cup)) and (fitsIn(clyde, cup)),

infer the new clause

(¬largerThan(clyde, cup)).
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Resolution Proof: Forward Chaining

Logical consequences can be generated from the resolution rule in two
ways: Forward Chaining and Refutation.

Forward Chaining Inference: chain multiple resolution steps

Suppose we have a sequence of clauses C1,C2, . . . ,Ck

Suppose that each Ci is either in the KB or is the result of a
resolution step involving two prior clauses in the sequence

Then, we have that KB ` Ck

Forward chaining is sound, so we also have KB |= Ck

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 10 / 29



Resolution Proof: Refutation Proofs

Refutation Proofs: a proof by contradiction

Fact: KB |= φ iff KB ∧ ¬φ has no model (“unsatisfiable”)

Since resolution is sound, then if we can derive a contradiction from
KB ∧ ¬φ, we consider φ proved

A contradiction is the empty clause ()

A proof:

Suppose we have a sequence of clauses C1,C2, . . . ,Cm

Suppose that each Ci is either in the KB ∧ ¬φ or is the result of
resolving two prior clauses in the sequence

Suppose Cm is ()

Then KB ` φ
By soundness, KB |= φ.
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Resolution Proof Example: Forward Chaining

Knowledge Base: (in clausal form)1

(elephant(clyde), giraffe(clyde)) (1)

(¬elephant(clyde), likes(clyde, peanuts)) (2)

(¬giraffe(clyde), likes(clyde, leaves)) (3)

(¬likes(clyde, leaves)) (4)

Want to prove: likes(clyde, peanuts)

Using forward chaining:

Resolve (3) & (4), get new clause (5) = (¬giraffe(clyde))

Resole (5) & (1), get new clause (6) = (elephant(clyde))

Resolve (6) & (2), get desired conclusion (likes(clyde, peanuts))

1Reminder: A → B stands for ¬A ∨ B
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Resolution Proof Example: Refutation

Knowledge Base:

(elephant(clyde), giraffe(clyde)) (1)

(¬elephant(clyde), likes(clyde, peanuts)) (2)

(¬giraffe(clyde), likes(clyde, leaves)) (3)

(¬likes(clyde, leaves)) (4)

Want to prove: likes(clyde, peanuts)

Using refutation:

Add negation of query to KB: (5) = ¬likes(clyde, peanuts)

Resolve (5) & (2), get (6) = (¬elephant(clyde))

Resolve (6) & (1), get (7) = (giraffe(clyde))

Resolve (7) & (3), get (8) = (likes(clyde, leaves))

Resolve (8) & (4), get the empty clause ()
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Resolution Proofs

Proofs by refutation have the advantage that they are easier to find
— they are more focused on the particular conclusion we are trying to
reach

To develop a complete resolution proof procedure for First-Order
Logic, we need:

1 A way of converting a KB and the query φ into clausal form
[Today’s focus]

2 A way of extending resolution to work on formulas with variables
[unification! Will cover next Monday]
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Conversion to Clausal Form

An 8-step procedure to convert a KB into clausal form:

1 Eliminate implications

2 Move negations inwards and simplify ¬¬q

3 Standardize variables

4 Skolemize

5 Convert to Prenex form

6 Distribute conjunctions over disjunctions

7 Flatten nested conjunctions and disjunctions

8 Convert to clauses

Will use this example to illustrate:

∀X

{
p(X ) →

[
∀Y
[
p(Y ) → p(f (X ,Y ))

]
∧ ¬
[
∀Y (¬q(X ,Y ) ∧ p(Y ))

]]}
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 6 September 30, 2020 15 / 29



Step 1: Eliminate Implications

Given:

∀X

{
p(X ) →

[
∀Y
[
p(Y ) → p(f (X ,Y ))

]
∧ ¬
[
∀Y (¬q(X ,Y ) ∧ p(Y ))

]]}

Eliminate implications: replace A → B with ¬A ∨ B

Obtain:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y )∨ p(f (X ,Y ))

]
∧ ¬
[
∀Y (¬q(X ,Y ) ∧ p(Y ))

]]}
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Step 2: Move Negation Inwards

Given:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧ ¬
[
∀Y (¬q(X ,Y ) ∧ p(Y ))

]]}

Move negation inwards and simplify double negations

¬(¬A) becomes A

¬(A ∧ B) becomes (¬A ∨ ¬B)

¬(A ∨ B) becomes (¬A ∧ ¬B)

¬∀X (A) becomes ∃X (¬A)

¬∃X (A) becomes ∀X (¬A)

Obtain:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
∃Y (q(X ,Y )∨¬p(Y ))

]]}
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Step 3: Standardize Variables

Given:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
∃Y (q(X ,Y ) ∨ ¬p(Y ))

]]}

Rename variables so that each quantified variable is unique

Obtain:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
∃Z (q(X ,Z ) ∨ ¬p(Z ))

]]}
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Step 4: Skolemize

Given:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
∃Z (q(X ,Z ) ∨ ¬p(Z ))

]]}

“Skolemize”: remove all existential quantifiers ∃ by introducing new
function symbols in place of the formerly-quantified variables

Obtain:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
q(X , g(X )) ∨ ¬p(g(X ))

]]}
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Skolemization Explained

Consider an example:

∃Y (elephant(Y ) ∧ friendly(Y ))

This states that there is some individual (a binding for Y ) that is
both an elephant and friendly

To remove the existential quantifier, we invent a name for this entity,
let’s say a. This is a new constant symbol, not equal to any previous
constant symbols. We get a logically equivalent statement:

elephant(a) ∧ friendly(a)

This is saying exactly the same thing, since we know nothing about
this new constant apart from the fact that it exists and has to be
bound to some individual
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Skolemization Explained

It is essential that the introduced symbol a is new. Otherwise, we
might know something about a from the KB

If the KB had something to say about the constant a, we would be
asserting more than the existential did about that individual(s) hiding
under the name Y

In the original quantified formula, we know nothing about the variable
Y except what was being asserted by the formula itself
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Skolemization Explained

A less trivial example:

∀X∃Y (loves(X ,Y ))

This states that for every X there is some Y that loves X — could be
a different Y for each X

Replacing the existential by a new constant won’t work

∀X (loves(X , a))

because now there is one particular individual a loved by every X

To properly convert existential quantifiers which are inside the scope
of universal quantifiers, we must use functions and not just dumb
constants
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Skolemization Explained

We must use a function which takes as an argument (i.e., depends
on) every universally quantified variable that scopes the existential

In our example, Y is inside the scope of ∀X (“X scopes Y ”), so we
must replace the existential Y by a function of X :

∀X (loves(X , g(X ))),

where g is a new function symbol.

Now, the formula asserts that for every X there is some individual (as
given by g(X )) that X loves. Since g is a new symbol, it could be
interpreted arbitrarily, so g(X ) could be different for each binding of
X .
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Skolemization: Some More Examples

∀X∀Y ∀Z∃W . r(X ,Y ,Z ,W )

becomes

∀X∀Y ∀Z . r(X ,Y ,Z , h1(X ,Y ,Z ))

∀X∀Y ∃W . r(X ,Y , g(W ))

becomes

∀X∀Y . r(X ,Y , g(h2(X ,Y )))

∀X∀Y ∃W∀Z . r(X ,Y ,W ) ∧ q(Z ,W )

becomes

∀X∀Y ∀Z . r(X ,Y , h3(X ,Y )) ∧ q(Z , h3(X ,Y ))

∀X∀Y ∃W∀Z (r(X ,Y ,W ) ∧ q(Z ,W )) becomes
∀X∀Y ∀Z (r(X ,Y , h3(X ,Y )) ∧ q(Z , h3(X ,Y )))
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Step 5: Convert to Prenex Normal Form

Given:

∀X

{
¬p(X ) ∨

[
∀Y
[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
q(X , g(X )) ∨ ¬p(g(X ))

]]}

Bring all quantifiers to the outside (front). At this point, we only have universals

left, and each quantifies a differently-named variable

Obtain:

∀X∀Y

{
¬p(X ) ∨

[[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
q(X , g(X )) ∨ ¬p(g(X ))

]]}
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Step 6: Conjunctions Over Disjunctions

Given:

∀X∀Y

{
¬p(X )∨

[[
¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
q(X , g(X )) ∨ ¬p(g(X ))

]]}

Apply the distributive law: A ∨ (B ∧ C ) becomes (A ∨ B) ∧ (A ∨ C )

Obtain:

∀X∀Y

{[
¬p(X )∨ (¬p(Y ) ∨ p(f (X ,Y )))

]
∧
[
¬p(X )∨ (q(X , g(X )) ∨ ¬p(g(X )))

]}
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Step 7: Flatten

Given:

∀X∀Y

{[
¬p(X ) ∨ (¬p(Y ) ∨ p(f (X ,Y )))

]
∧
[
¬p(X ) ∨ (q(X , g(X )) ∨ ¬p(g(X )))

]}

Flatten nested conjunctions and disjunctions: (A ∨ (B ∨ C )) becomes
(A ∨ B ∨ C )

Obtain:

∀X∀Y

{[
¬p(X ) ∨ ¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
¬p(X ) ∨ q(X , g(X )) ∨ ¬p(g(X ))

]}
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Step 8: Convert to Clauses

Given:

∀X∀Y

{[
¬p(X ) ∨ ¬p(Y ) ∨ p(f (X ,Y ))

]
∧
[
¬p(X ) ∨ q(X , g(X )) ∨ ¬p(g(X ))

]}

Remove quantifiers and break apart conjunctions (this is purely notational, we

are not changing the formula any more. The removed symbols become implicit)

Obtain:

¬p(X ) ∨ ¬p(Y ) ∨ p(f (X ,Y ))

¬p(X ) ∨ q(X , g(X )) ∨ ¬p(g(X ))

We are now in clausal form.
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End of Lecture

(¬p(X ),¬p(Y ), p(f (X ,Y )))

(¬p(X ), q(X , g(X )),¬p(g(X )))

Observe: we now have variables in the clauses!

Next lecture: how resolution handles this

(Unification)
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