
EECS 3401 — AI and Logic Prog. — Lectures 4 & 5
Adapted from slides of Prof. Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

September 23, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 1 / 55

Intro to Prolog

Today: Prolog: Core Concepts and Notation

Required reading: Clocksin & Mellish, C.S., Programming in Prolog,
5th edition, Springer Verlag, New York, 2004.

Chapters 1, 2, 3.1–3.3, 8

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 2 / 55

Declarative/logic programming

Key idea: the program is a logical theory

Axiomatize a domain of interest, and then query it

Most popular language — Prolog

Core constructs, terms, and statements come from FOL

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 3 / 55

Terms

Prolog statements express relationships between terms

Prolog terms = a generalization of FOL terms
constants, variables, functions with other terms as arguments

Examples:

john constant

john_smith constant

X variable

Node variable

_person variable

fatherOf(paul) unary function

date(23,09,2020) 3-ary function

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 4 / 55

For complex terms:

fatherOf︸ ︷︷ ︸
functor

(paul)︸ ︷︷ ︸
arity is 1

date︸ ︷︷ ︸
functor

(23,09,2020)︸ ︷︷ ︸
arity is 3

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 5 / 55

Terms

Variables begin with upper-case character or the underscore “ ”
Constants and functors begin with a lower-case character
As always, terms denote objects
Compound terms are called structures (or structs) and are used to
represent complex, structured data

course(ai_and_logic_prog, lecturer(vitaliy),

location(online, zoom))

Terms usually have a tree structure:

course(

ai_and_logic_prog lecturer(

vitaliy

location(

online zoom
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 6 / 55

Facts

Facts are like atomic formulas in FOL

Syntax is exactly like that of terms, but facts are stand-alone parts of
the program

Each fact ends with a period.

fatherOf(paul, henry).

mortal(socrates).

likes(X, iceCream).

likes(mary, brotherOf(helen)︸ ︷︷ ︸
term

).

︸ ︷︷ ︸
fact

Variables are implicitly universally quantified

likes(X, iceCream). means ∀X (likes(X , iceCream))

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 7 / 55

Rules

Rules are conditional statements

mortal(X) :-︸︷︷︸
“if”

human(X).

∀X (human(X)→ mortal(X))

The left-hand side is an atom/fact, called the head

The right-hand side is the body of the rule

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 8 / 55

Rules

The body of the rule can be a conjunction:

daughter(X, Y) :- father(Y, X), female(X).

The comma “ , ” means “and”.
Equivalently in FOL:

∀X∀Y (father(Y ,X) ∧ female(X)→ daughter(X ,Y))

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 9 / 55

Rules: more examples

ancestor(X, Y) :- father(X,Z), ancestor(Z,Y).

Recursive rule

In FOL:

∀X∀Y ∀Z (father(X ,Z) ∧ ancestor(Z ,Y)→ ancestor(X ,Y))

≡ ∀X∀Y (∃Z (father(X ,Z) ∧ ancestor(Z ,Y))→ ancestor(X ,Y))

Thus, consider variables which appear only in the body as existentially
quantified

Interestingly, this kind of statement doesn’t actually work in FOL —
it’s an instance of transitive closure — but does work in Prolog due
to some semantic differences (later)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 10 / 55

Queries

A query is a question posed to a Prolog program

More generally, a goal is a statement to be proved. Query =
user-issued goal.

Program = KB, query = formula

“Does the KB entail this formula?”

Let the program be

mortal(X) :- human(X).

human(ulyssus). human(penelope).

god(zeus).

When the program is queried with

?- mortal(ulyssus).

the Prolog interpreter derives the answer Yes .

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 11 / 55

Open Queries

Can have variables in the query, e.g.,

?- mortal(X).

Consider the variables in queries to be existentially quantified

The interpreter tries to find a binding for the variables for which the
query is true with respect to the program

Can query the interpreter for all possible bindings

?- mortal(X).

X = ulyssus ;

X = penelope

Yes

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 12 / 55

Open Queries

Can have conjunctive queries

?- mortal(X), mortal(Y), not (X=Y).

X = ulyssus,

Y = penelope ;

X = penelope,

Y = ulyssus ;

false.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 13 / 55

Lists

A list is a special kind of term

An arbitrary-length ordered sequence of elements

Due to their usefulness, lists get special syntax, but are regular terms
under the hood

[] is the empty list

[a, b, c] is a list of three components, namely a , b , and c

Can peek under the hood using the query display(X) :

?- display([a,b,c]).

'[|]'(a,'[|]'(b,'[|]'(c,[])))

'[|]'

a '[|]'

b '[|]'

c []

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 14 / 55

Lists

Standard syntax: [First | Rest]

Used to gain access to:

First The head — the first element of the list
Rest The tail — the remainder of the list

Deconstructing a list:

?- [cat, dog, monkey] = [X | Y].

X = cat,

Y = [dog, monkey].

Constructing a list:

?- X = cat, Y = [dog, monkey], Z = [X | Y].

X = cat,

Y = [dog, monkey].

Z = [cat, dog, monkey].

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 15 / 55

Unification

Unification — an essential operation in Prolog

Matching of one structure with another, instantiating variables as
necessary

Achieved using the operator =

Remember: “= ” is neither numerical equality nor identity

So when we issue a query like [cat, dog, monkey] = [X | Y] ,
we are asking the interpreter to find a binding for all variables such
the left-hand side and the right-hand side are identical.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 16 / 55

Building a knowledge base

To be used in computation, facts and rules must be stored in the
dynamic database (internal to the interpreter)

Facts and rules get into the database through assertion and
consultation

Consultation loads facts and rules from a file

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 17 / 55

Assertion

Assert the fact human(ulyssus)

?- assert(human(ulyssus)).

This adds it to the dynamic knowledge base of the interpreter.

We can now issue a query

?- human(X).

and the interpreter will reply with X = ulyssus .

Similarly, the special predicate retract removes facts and rules from
the dynamic KB.

Avoid assert and retract whenever possible (they are
meta-predicates which change the state)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 18 / 55

Consult

This loads facts and rules from a file family.prolog :

?- consult('family.prolog').

Synonym:

?- [family].

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 19 / 55

Semantics of Prolog, intuitively

A Prolog program defines a set of relations — i.e., specifies which
tuples of objects/terms belong to a particular relation

In other words, a prolog program defines a model (in the sense of
FOL)

Note: a Prolog constant (e.g., cat) is a literal. In FOL, two distinct
constants can be mapped to the same domain object. In Prolog,
distinct literals are interpreted as distinct objects. Same goes for all
other symbols.

Thus, Prolog merges the notion of terms and domain objects into one.

Declarative programming generally avoids state changing operations.
Once written, the datastructures are immutable, and all the useful
work is done in the process of proving some goal from the existing
facts and rules.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 20 / 55

Semantics of Prolog, cont.

Consider the program

fatherOf(john,paul).

fatherOf(mary,paul).

motherOf(john,lisa).

parentOf(X,Y) :- fatherOf(X,Y).

parentOf(X,Y) :- motherOf(X,Y).

This specifies fatherOf/2 as the relation

{〈 john , paul 〉, 〈 mary , paul 〉}.

Similarly for motherOf/2 , parentOf/2

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 21 / 55

Rules as Procedures

Recall: a rule has the form

head :- body.

The head is like the name of a procedure

The body is like the body of the procedure — a sequence of
sub-goals that have to be proved to show that the head’s goal holds

The sub-goals are proved in the left-to-right order; if in the process a
variable is bound to something, the binding persists for the
subsequent sub-goals

The rule succeeds if all sub-goals succeed

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 22 / 55

Passing values

Calling a goal can instantiate its variables

A sub-goal’s success can bind a variable, also binding the same
variable in the goal

Akin to passing values in or out of a procedure

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 23 / 55

Example

A program:

motherOf(john,lisa).

parentOf(X,Y) :- motherOf(X,Y).

Queries:

?- parentOf(john, X).

X = lisa.

?- parentOf(X, lisa).

X = john.

?- parentOf(X, Y).

X = john,

Y = lisa.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 24 / 55

Relational Thinking

No functions per se in Prolog (except in arithmetics)

When writing a program, try formulating statements about function
values as relational facts

Example: factorial

factorial(0, 1).

factorial(N, M) :- K is N-1, factorial(K, L),

M is N * L.

To compose functions as in Y = f (g(X)), you must name
intermediate results:

fg(X, Y) :- g(X, Z), f(Z, Y).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 25 / 55

Asmost Everything is a Term

Syntactically, almost everything is a term in Prolog

Lists are terms (recall an earlier slide)

Rules are terms

grandfather(X,Y) :- father(X,Z), father(Z,Y).

What is the functor here?

Queries are terms

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 26 / 55

Arithmetics in Prolog

For convenience, Prolog retains arithmetic functions as actual
functions:1

?- X is exp(1).

X = 2.718281828459045.

?- X is (4 + 2) * 5.

X = 30.

Meaning of is : evaluate the right-hand side and unify the result
with the left-hand side.

In contrast: the unification operator = will not evaluate the term on
RHS, try it.

1 exp(N) means eN

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 27 / 55

Operators

Some functors are represented by infix or prefix or postfix operators

prefix F ab
infix a F b

postfix ab F

Some infix operators: is , = , + , * , / , mod , > , >= , :- , , ,
etc.

+ and - are both prefix and infix: +(1,2) is the same as 1 + 2

:- as prefix is a comand used for declarations

Operators have precedence

You can easily define your own operators

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 28 / 55

Getting help

Built-in predicate help :2

?- help(reverse).

reverse(?List1, ?List2)

Is true when the elements of List2 are

in reverse order compared to List1.

Notation here:

+Arg Means Arg should be instantiated (input)

-Arg Means Arg can be a new variable; will be unified with

the result (output)
?Arg Means Arg can be either input or output

https://www.swi-prolog.org/pldoc/doc_for?object=manual

2On Linux, need to install docs as a separate package, e.g. pl-doc on Fedora
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 29 / 55

https://www.swi-prolog.org/pldoc/doc_for?object=manual

Getting help

Built-in predicate apropos :

?- help(comparison).

Warning: No help for comparison.

Warning: Use ?- apropos(query). to search for candidates.

?- apropos(comparison).

% SEC 'cpp -plterm -comparison ' Comparison

% SEC 'foreign -compare ' Term Comparison

% SEC collate Language -specific comparison

% SEC 'cql -compare -null' Comparisons with NULL

% SEC 'cql -where -arith ' WHERE with arithmetic comparison

% SEC unifyspecial Special unification and comparison predicates

% SEC compare Comparison and Unification of Terms

% SWI collation_key /2 Create a Key from Atom for locale -specific comparison.

% LIB rdf_compare /3 True if the RDF terms Left and Right are ordered according to the comparison operator Diff.

true.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 30 / 55

Some examples

append/3 is an example of a reversible if steadfast predicate

?- append([a,b],[c,d],X).

X = [a, b, c, d].

?- append([a,b],X,Y).

Y = [a, b|X].

?- append(X,Y,Z).

X = [],

Y = Z ;

X = [_111616],

Z = [_111616|Y] ;

X = [_111616, _112730],

Z = [_111616, _112730|Y] .

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 31 / 55

Reversible Programming

Good predicates are steadfast

They work correctly even if unusual values are supplied — e.g.,
variables for inputs, constants for outputs

Non-steadfast predicates require specific arguments to be instantiated

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 32 / 55

Unification

Prolog matches terms by unifying them. Specifically, it apples the
most general unifier

Instantiates variables as little as possible to make them match

?- X = f(Y,b,Z), X = f(a,V,W).

X = f(a, b, W),

Y = a,

Z = W,

V = b.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 33 / 55

Family Relations Example

The program:

parent(Parent, Child) :- mother(Parent, Child).

parent(Parent, Child) :- father(Parent, Child).

father('George', 'Elizabeth').

father('George', 'Margaret').

mother('Mary', 'Elizabeth').

mother('Mary', 'Margaret').

Observe: implicitly, there is disjunction.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 34 / 55

Using “;” to get all solutions

?- parent(P, C).

P = 'Mary',

C = 'Elizabeth' ;

P = 'Mary',

C = 'Margaret' ;

P = 'George',

C = 'Elizabeth' ;

P = 'George',

C = 'Margaret'.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 35 / 55

How Prolog finds solutions

Use predicate trace/0 to enable derivation info in interactive mode

(useful for debugging). Use notrace/0 to turn off.

[debug] ?- trace.

true.

[trace] ?- parent(Parent, Child1), parent(Parent, Child2),

not(Child1 = Child2).

Call: (11) parent(_35824, _35826) ? creep

Call: (12) mother(_35824, _35826) ? creep

Exit: (12) mother('Mary', 'Elizabeth') ? creep

Exit: (11) parent('Mary', 'Elizabeth') ? creep

Call: (11) parent('Mary', _35832) ? creep

Call: (12) mother('Mary', _35832) ? creep

Exit: (12) mother('Mary', 'Elizabeth') ? creep

Exit: (11) parent('Mary', 'Elizabeth') ? creep

^ Call: (11) not('Elizabeth'='Elizabeth') ? creep

...

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 36 / 55

How Prolog finds solutions (cont.)

...

^ Fail: (11) not(user:('Elizabeth'='Elizabeth')) ? creep

Redo: (12) mother('Mary', _35832) ? creep

Exit: (12) mother('Mary', 'Margaret') ? creep

Exit: (11) parent('Mary', 'Margaret') ? creep

^ Call: (11) not('Elizabeth'='Margaret') ? creep

^ Exit: (11) not(user:('Elizabeth'='Margaret')) ? creep

Parent = 'Mary',

Child1 = 'Elizabeth',

Child2 = 'Margaret' .

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 37 / 55

The Query-Answering Process

A query is a conjunction of terms

If all terms succeed, the answer to query is Yes

A term in a query succeeds if

it matches a fact in the database
it matches the head of a rule whose body succeeds

The substitution used to unify the term and the fact/head is applied
to the rest of the query

Query terms are processed in the left-to-right order

Database facts/rules are tried in top-to-bottom order

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 38 / 55

Examples of Recursion

Generating permutations

Intuitively: a permutation is a rearrangement

Recursive thinking: a permutation P of a list L is a list

whose first element is some arbitrary element E from L and

whose remainder is a permutation of L with E removed

Special/base case: [] is a permutation of []

Program:

permutation([],[]).

permutation(L, [E|Tail]) :- select(E,L,Rest),

permutation(Rest,Tail).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 39 / 55

Selecting an Element From a List

To select an element from a list, we can either

select the first leaving the rest, or

select some element from the rest and leave the first plus the
unselected elements from the rest

select(X,[X|R],R).

select(X,[Y|R],[Y|RS]):- select(X,R,RS).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 40 / 55

Sorting

Find a permutation that is ordered:

mysort(L,P):- permutation(L,P), ordered(P).

ordered([]).

ordered([_]).

ordered([E1,E2|R]) :- E1 =< E2, ordered([E2|R]).

?- mysort([8,3,5,6,3,3,6,1],X).

X = [1, 3, 3, 3, 5, 6, 6, 8] ;

This is an example of the generate-and-test pattern

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 41 / 55

Reverse

reverse(List, ReversedList) holds if ReversedList is a list with

the components of List in the reverse order
A recursive implementation:

reverse([],[]).

reverse([F|R],RL):- reverse(R,RR), append(RR, [F], RL).

append([],L,L).

append([F|R],L,[F|RL]):- append(R,L,RL).

?- reverse([a,b,c,d,e,f],X).

X = [f, e, d, c, b, a]

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 42 / 55

Reverse with tail recursion

Tail recursion: save the recursive call till the end to avoid flooding
the call stack

A tail-recursive definition of reverse/2 :

reverse(L,RL):- reverse(L,[],RL). /* Alias */

reverse([], Acc, Acc). /* Tertiary! */

reverse([F|R],Acc,RL) :- reverse(R,[F|Acc],RL).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 43 / 55

Solving a Logical Puzzle with Prolog

The Zebra Puzzle

There are five houses, occupied by five gentlemen of five different
nationalities, who all have different coloured houses, keep differ-
ent pets, drink different drinks, and smoke different brands of
cigarettes.
The Englishman lives in a red house.
The Spaniard keeps a dog.
The owner of the green house drinks coffee.
. . .
The ivory house is just to the left of the green house.
. . .
The Chesterfields smoker lives next to a house with a fox.

Who owns the zebra? Who drinks water?

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 44 / 55

Zebra in Prolog

Represent the 5 houses by a structure of 5 terms
house(Colour, Nationality, Pet, Drink, CigBrand)

Create a partial structure using variables, to be instantiated in the
process of solving

Specify constraints to instantiate variables

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 45 / 55

Zebra: Building Houses

Let’s build the (incomplete) houses:

makehouses(0,[]).

makehouses(N,[house(Col, Nat, Pet, Drk, Cig)|List]) :-

N>0, N1 is N - 1, makehouses(N1,List).

Or, more cleanly, using anonymous variables:

makehouses(N,[house(_, _, _, _, _)|List]) :-

N>0, N1 is N - 1, makehouses(N1,List).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 46 / 55

The Empty Houses

?- makehouses(5, Houses).

Houses = [house(_10398, _10400, _10402, _10404, _10406),

house(_10416, _10418, _10420, _10422, _10424),

house(_10434, _10436, _10438, _10440, _10442),

house(_10452, _10454, _10456, _10458, _10460),

house(_10470, _10472, _10474, _10476, _10478)]

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 47 / 55

Constraints

The Englishman lives in a red house3

house(red, englishman, _, _, _) on Houses,

The Spaniard keeps a dog
house(_, spaniard, dog, _, _) on Houses,

The owner of the green house drinks coffee
house(green, _, _, coffee, _) on Houses,

The ivory house is just to the left of the green house

sublist2([house(ivory, _, _, _, _),

house(green, _, _, _, _)], Houses),

The smoker of Chesterfields lives next to a house with a fox

nextto([house(_, _, _, _, chesterfields),

house(_, _, fox, _, _)], Houses),

3Wait till next slide regarding on
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 48 / 55

Defining an Operator

on is a user-defined infix operator that is a version of member/2 .

Definition:

:- op(100, zfy, on).

X on List :- member(X, List).

This amounts to

X on [X|_].

X on [_|R] :- X on R.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 49 / 55

Helper Predicates Used Above

“just left of”, “lives next to”?

Define sublist2/2 as

sublist2([S1, S2], [S1, S2 | _]) .

sublist2(S, [_ | T]) :- sublist2(S, T).

Define nextto/3 as

nextto(H1, H2, L) :- sublist2([H1, H2], L).

nextto(H1, H2 ,L) :- sublist2([H2, H1], L).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 50 / 55

Finding the Zebra

Who owns the zebra and who drinks water?

find(ZebraOwner, WaterDrinker) :-

makehouses(5, Houses),

house(red, englishman, _, _, _) on Houses,

... /* all other constraints here */

house(_, WaterDrinker, _, water, _) on Houses,

house(_, ZebraOwner, zebra, _, _) on Houses.

The solution is generated and queried in the same clause

Neither water nor zebra are mentioned in the constraints

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 51 / 55

Solving the Puzzle

?- [zebra].

true.

?- find(ZebraOwner, WaterDrinker).

ZebraOwner = japanese,

WaterDrinker = norwegian ;

false.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 52 / 55

How Prolog Finds the Solution

After 8 constraints we have:

Houses = [

house(red, englishman, snail, _G251, old_gold),

house(green, spaniard, dog, coffee, _G264),

house(ivory, ukrainian, _G274, tea, _G276),

house(green, _G285, _G286, _G287, _G288),

house(yellow, _G297, _G298, _G299, kools)]

The next constraint is “the owner of the third house drinks milk”, which
can’t be done with the current instantiation of Houses . Prolog will
backtrack to latest point of choice and try another.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 53 / 55

Full Solution

The complete solution is unique:

Houses = [

house(yellow, norwegian, fox, water, kools),

house(blue, ukrainian, horse, tea, chesterfields),

house(red, englishman, snail, milk, old_gold),

house(ivory, spaniard, dog, orange, lucky_strike),

house(green, japanese, zebra, coffee, parliaments)]

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 54 / 55

End of lecture

Next time: More Formal Logic (Inference in FOL)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lectures 4 & 5 September 23, 2020 55 / 55

