
EECS 3401 — AI and Logic Prog. — Lecture 2
Adapted from slides of Prof. Yves Lesperance

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

September 16, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 1 / 32



EECS 3401

Required reading: Russell & Norvig, Chapter 8

Optional reading: same, Chapter 7

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 2 / 32



Knowledge Representation

Example: understanding a children’s story

How do we test understanding?

For one, the subject must be able to answer (correctly) simple
questions about the story.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 3 / 32



Example: Three Little Pigs

Figure: Pigs build houses using different techniques

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 4 / 32



Example: Three Little Pigs

Figure: Wolf huffs and puffs

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 5 / 32



Example: Three Little Pigs

Why couldn’t the wolf blow down the house made of bricks?

What background knowledge are we drawing on to reach that
conclusion?

Brick structures are stronger than straw and stick structures
Objects such as the wolf have physical limitations. The wolf can only
blow so hard.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 6 / 32



Knowledge Representation

Operating in our world requires vast amounts of knowledge

Also requires reasoning with that knowledge

It is doubtful any one of us has studied the blowing ability of wolfs
But by knowing the general rules of our world, we can derive this
We employ reasoning to make conclusions about the wolf

Generally, reasoning effectively compresses knowledge so we don’t need
to store it as such. Without reasoning, we’d need to store
unimaginably many trivial facts.

Things that can’t fit into a teacup: elephants, cars, bricks, shoes,
whole coconuts, large dogs, small dogs, etc.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 7 / 32



Logical Representations

AI typically employs logical representations of knowledge

They are mathematically precise, so amenable to analysis (properties,
computational complexity of inference, etc.)

They are formal languages, so can be mechanically manipulated

They have a formal syntax and a formal semantics

They usually have well-developed proof theories — formal
procedures for reasoning (deriving new statements from the old)

They are generally declarative, easy to extend

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 8 / 32



Model-Theoretic Semantics

Suppose our knowledge is represented by some collection of strings
(sentences)

Generally, what is the meaning of a sentence?
A mapping: {set of sentences} 7→ {features of the world}
Want to provide an interpretation of every piece of our representation

Like having an intuitive understanding of what individual statements
in a program mean. If you know what the separate instructions mean,
can figure out what the whole program does.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 9 / 32



Model-Theoretic Semantics

Model-theoretic semantics

is a formal characterization (in terms of set theory)

can be used to prove a wide range of properties of the representation

maps arbitrarily complex sentences of the language (logic) down into
intuitive assertions about the real world

is based on notions that are very close to how we think about the real
world. Thus, it provides a bridge from the syntax to an intuitive
understanding of what is being asserted

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 10 / 32



Model-Theoretic Semantics

Representation

Model-Theoretic Semantics

Agent’s Environment

direct map difficult

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 11 / 32



Semantics: formal details

A set of objects
Stand for distinct identifiable objects that are important for your application

Distinguished subsets of objects — Properties

Distinguished sets of tuples of objects — Relations

Distinguished functions mapping tuples of objects to objects —
Functions

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 12 / 32



Example

Try viewing the world in the terms of set theory

Objects:
students, subjects, assignments, numbers

Predicates:
difficult(subject), cs major(student)

Relations
handed in(student, assignment)

Functions:
grade(student, assignment) 7→ number

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 13 / 32



First-Order Logic (FOL)

Syntax A grammar specifying what are the legal syntactic constructs
of the representation

Semantics A formal mapping from syntactic constructs to set-theoretic
assertions

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 14 / 32



FOL Syntax

Symbol = a unique artifact, no matter what it is.
Example: Unicode symbols, digits, emojis, whatever — but needs to be
distinguishable from other symbols. Contrary to common usage, and for
the purposes of convenience, we consider a string of characters to be a
single symbol.

We will need symbols to represent:

constants

variables

functions1

predicates1

1These are associated with an arity, the number of arguments
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 15 / 32



FOL Syntax: building terms

A term is either

a variable

a constant

an expression f (t1, . . . , tk ) where

f is a function symbol
k is its arity
ti (for 1 ≤ i ≤ k) is a term2

Think: term = expression that denotes an object
Example: if our objects are numbers, then 1 + 2 is a term that denotes 3

2notice induction
Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 16 / 32



FOL Syntax: atomic formulas

An atom (or atomic formula) is an expression p(t1, . . . , tk ) where

p is a predicate symbol

k is its arity

ti (1 ≤ i ≤ k) is a term

Note: constants are functions without arguments

Notation: we will use UPPER CASE for variables, lower case for
everything else. (This is what Prolog does, let’s stay consistent with it)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 17 / 32



Semantic Intuition — Terms

Terms denote objects (individuals)

Constants denote specific objects
bill , jane

Variables range over individuals
X — could be jane or bill or any other object in our universe

Functions map tuples of objects to other objects
father(jane), mother(father(jane)), mother(X ), distance between(X ,Y )

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 18 / 32



Semantic Intuition — Formulas

Atoms denote facts about the world (can only be true or false)

father of (bill , jane) — “Bill is the father of Jane”

female(jane)

satisfied(client15)

satisfied(C )

desires(client15, rome,week29)

desires(X ,Y ,Z )

star rating(hotel7, 4)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 19 / 32



FOL Syntax — Formulas (I)

Atoms are formulas (“atomic formulas”)

If φ is a formula, then its negation ¬φ is also a formula
¬φ is true whenever φ is false

If φ1, . . . , φn are formulas, then their conjunction φ1 ∧ φ2 ∧ . . . ∧ φn

is also a formula
φ1 ∧ φ2 ∧ . . . ∧ φn is true whenever every φi (1 ≤ i ≤ n) is true

If φ1, . . . , φn are formulas, then their disjunction φ1 ∨ φ2 ∨ . . .∨ φn is
also a formula
φ1 ∨ φ2 ∨ . . . ∨ φn is true whenever at least one of φi (1 ≤ i ≤ n) is true

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 20 / 32



FOL Syntax — Formulas (II)

Recall:

∃ Existential quantifier — “There exists. . . ”

∀ Universal quantifier — “For all. . . ”

If φ is a formula, then ∃X (φ) is also a formula
Asserts that there is an object such that, if X is bound to it, φ becomes true

If φ is a formula, then ∀X (φ) is also a formula
Asserts that φ is true for every single binding of X

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 21 / 32



FOL Syntax — Some useful abbreviations

Implication — “if . . . then . . . ”

φ1 → φ2 means ¬φ1 ∨ φ2

Double (bi-directional) implication — “if and only if”

φ1 ↔ φ2 means (φ1 → φ2) ∧ (φ2 → φ1)

Standard rules for connective precedence apply,
i.e. φ1 ∧ φ2 ∨ φ3 is (φ1 ∧ φ2) ∨ φ3

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 22 / 32



FOL Semantics

Formulas ban be built up recursively, can be arbitrarily complex

Syntactically distinct formulas may be logically equivalent

∀X ,Y (elephant(X ) ∧ teacup(Y )→ larger than(X ,Y ))

∀X ,Y (teacup(Y ) ∧ elephant(X )→ larger than(X ,Y ))

The purpose of semantics is to capture this equivalence and, more
generally, to make sense of complex formulas

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 23 / 32



FOL Semantics

Semantics = a formal mapping from formulas to semantic entities
(individuals, sets, relations and functions over individuals)

meaning : {formulas} 7→ {set-theoretic notions}

This mapping mirrors the recursive nature of the syntax. Thus, we
can give any formula (no matter how complex) a mapping to
semantic entities

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 24 / 32



FOL Semantics — Formal Definition

First, we fix the language. The language L is defined by its primitive
symbols: the sets F ,P,V

F — a set of function symbols (inc. constants)
Each symbol f ∈ F has a particular arity

P — a set of predicate and relation symbols
Each symbol p ∈ P has a particular arity

V — an infinite set of variables

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 25 / 32



FOL Semantics — Formal Definition

An interpretation (structure) is a tuple 〈D,Φ,Ψ, ν〉, where

D is a non-empty set (domain of individuals)
“universe of discourse”

Φ : F 7→ (Dk 7→ D)
maps every k-ary function symbol f ∈ F to a k-ary function over D
Careful: f is a symbol, Φ(f ) is the corresponding function over the domain

Ψ : P 7→ (Dk 7→ {true, false})
maps every k-ary predicate symbol p ∈ P to an indicator function over k-ary

tuples of individuals

ν : V 7→ D is a variable assignment function. Simply maps every
variable to some domain object.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 26 / 32



Intuitions

The domain D is just a set:

craig

jane

100 grandhotel

rome

portofino 7

cat

(Underlined symbols denote domain individuals to avoid confusion.
They are not symbols of the language)

Domains are usually infinite, but let’s use finite ones to prime our
intuitions

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 27 / 32



Intuitions for Φ

Recall: Φ : F 7→ (Dk 7→ D)
Given a k-ary function f ∈ F and k individuals, Φ(f ) tells us what
f (d1, . . . , dk ) is.

0-ary functions (constants) are mapped to specific individuals in D
Φ(client17) = craig , Φ(rome) = rome

1-ary functions are mapped to functions in D 7→ D
Φ(min quality) = fmin quality , fmin quality (craig) = 3 stars

2-ary functions are mapped to functions in D2 7→ D
Φ(distance) = fdistance , fdistance(toronto, sienna) = 3256

And so on for n-ary functions

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 28 / 32



Intuitions for Ψ

Recall: Ψ : P 7→ (Dk 7→ {true, false})
Given a k-ary predicate p ∈ P and k individuals, Ψ(p) tells us whether the
relation denoted by p holds for these particular individuals.

0-ary predicates are mapped to true or false
Ψ(rainy) = True, Ψ(sunny) = False

Unary predicates are mapped to indicator functions of subsets of D
Ψ(satisfied) = psatisfied , psatisfied (craig) = True

Binary predicates are mapped to indicator functions of subsets of D2

Ψ(location) = plocation, plocation(grandhotel , rome) = True,

plocation(grandhotel , sienna) = False

And so on for n-ary predicates

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 29 / 32



Intuitions for ν

Only takes care of quantification. The exact mapping it specifies does
not really matter, as we will see later.

Notation: ν[X/d ] is a new variable assignment function, which is
exactly just like ν except that it maps the variable X to the individual
d . Otherwise, ν(Y ) = ν[X/d ](Y ).

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 30 / 32



FOL Semantics

GIven a language L and an interpretation I = 〈D,Φ,Ψ, ν〉,
Constant c denotes an individual
I(c) = Φ(c) ∈ D
Variable X denotes an individual
I(X ) = ν(X ) ∈ D
A complex term t = f (t1, . . . , tk ) denotes an individual
I(t) = Φ(f )(I(t1), . . . , I(tk )) ∈ D
We recursively find the denotation of each term and then apply the
function denoted by f to get the individual.
Thus, terms always denote individuals under an interpretation I

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 31 / 32



End of lecture

Next time: FOL Semantics continued, examples of interpretations

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 2 September 16, 2020 32 / 32


