EECS 3401 — AI and Logic Prog. — Lecture 2 Adapted from slides of Prof. Yves Lesperance

Vitaliy Batusov vbatusov@cse.yorku.ca

York University

September 16, 2020

- Required reading: Russell & Norvig, Chapter 8
- Optional reading: same, Chapter 7

- Example: understanding a children's story
- How do we test understanding?

For one, the subject must be able to answer (correctly) simple questions about the story.

Example: Three Little Pigs

Figure: Pigs build houses using different techniques

Example: Three Little Pigs

Figure: Wolf huffs and puffs

EECS 3401 Lecture 2

- Why couldn't the wolf blow down the house made of bricks?
- What background knowledge are we drawing on to reach that conclusion?
 - Brick structures are stronger than straw and stick structures
 - Objects such as the wolf have physical limitations. The wolf can only blow so hard.

- Operating in our world requires vast amounts of knowledge
- Also requires reasoning with that knowledge
 - It is doubtful any one of us has studied the blowing ability of wolfs
 - But by knowing the general rules of our world, we can derive this
 - We employ reasoning to make conclusions about the wolf
 - Generally, reasoning effectively compresses knowledge so we don't need to store it as such. Without reasoning, we'd need to store unimaginably many trivial facts.

Things that can't fit into a teacup: elephants, cars, bricks, shoes, whole coconuts, large dogs, small dogs, etc.

AI typically employs logical representations of knowledge

- They are mathematically precise, so amenable to analysis (properties, computational complexity of inference, etc.)
- They are formal languages, so can be mechanically manipulated
- They have a formal syntax and a formal semantics
- They usually have well-developed **proof theories** formal procedures for reasoning (deriving new statements from the old)
- They are generally declarative, easy to extend

- Suppose our knowledge is represented by some collection of **strings** (sentences)
- Generally, what is the meaning of a sentence?
 A mapping: {set of sentences} → {features of the world}
- Want to provide an interpretation of every piece of our representation
- Like having an intuitive understanding of what individual statements in a program mean. If you know what the separate instructions mean, can figure out what the whole program does.

Model-theoretic semantics

- is a formal characterization (in terms of set theory)
- can be used to prove a wide range of properties of the representation
- maps arbitrarily complex sentences of the language (logic) down into intuitive assertions about the real world
- is based on notions that are very close to how we think about the real world. Thus, it provides a bridge from the syntax to an intuitive understanding of what is being asserted

• A set of **objects**

Stand for distinct identifiable objects that are important for your application

- Distinguished subsets of objects Properties
- Distinguished sets of tuples of objects Relations
- Distinguished functions mapping tuples of objects to objects **Functions**

Try viewing the world in the terms of set theory

• Objects:

students, subjects, assignments, numbers

- Predicates: difficult(subject), cs_major(student)
- Relations handed_in(student, assignment)

• Functions:

 $grade(student, assignment) \mapsto number$

Syntax A grammar specifying what are the legal syntactic constructs of the representation

Semantics A formal mapping from syntactic constructs to set-theoretic assertions

Symbol = a unique artifact, no matter what it is.

Example: Unicode symbols, digits, emojis, whatever — but needs to be distinguishable from other symbols. Contrary to common usage, and for the purposes of convenience, we consider a string of characters to be a single symbol.

We will need symbols to represent:

- constants
- variables
- functions¹
- predicates¹

¹These are associated with an *arity*, the number of arguments

Vitaliy Batusov vbatusov@cse.yorku.ca (Yc

A term is either

- a variable
- a constant
- an expression $f(t_1, \ldots, t_k)$ where
 - f is a function symbol
 - k is its arity
 - t_i (for $1 \le i \le k$) is a $term^2$

Think: term = expression that denotes an *object*

Example: if our objects are numbers, then $1+2\ \mbox{is}$ a term that denotes 3

Vitaliy Batusov vbatusov@cse.yorku.ca (Yc

²notice induction

An **atom** (or *atomic formula*) is an expression $p(t_1, \ldots, t_k)$ where

- *p* is a predicate symbol
- k is its arity
- t_i $(1 \le i \le k)$ is a term

Note: constants are functions without arguments

Notation: we will use UPPER CASE for variables, lower case for everything else. (This is what Prolog does, let's stay consistent with it)

Terms denote objects (individuals)

- Constants denote specific objects *bill, jane*
- Variables range over individuals
 - X could be *jane* or *bill* or any other object in our universe
- Functions map tuples of objects to other objects father(jane), mother(father(jane)), mother(X), distance_between(X, Y)

Atoms denote facts about the world (can only be true or false)

- father_of (bill, jane) "Bill is the father of Jane"
- female(jane)
- satisfied(client15)
- satisfied(C)
- desires(client15, rome, week29)
- desires(X, Y, Z)
- star_rating(hotel7,4)

- Atoms are formulas ("atomic formulas")
- If ϕ is a formula, then its **negation** $\neg \phi$ is also a formula $\neg \phi$ is true whenever ϕ is false
- If φ₁,..., φ_n are formulas, then their conjunction φ₁ ∧ φ₂ ∧ ... ∧ φ_n is also a formula
 φ₁ ∧ φ₂ ∧ ... ∧ φ_n is true whenever every φ_i (1 ≤ i ≤ n) is true
- If φ₁,..., φ_n are formulas, then their disjunction φ₁ ∨ φ₂ ∨ ... ∨ φ_n is also a formula
 φ₁ ∨ φ₂ ∨ ... ∨ φ_n is true whenever at least one of φ_i (1 ≤ i ≤ n) is true

Recall:

- \exists Existential quantifier "There exists..."
- ∀ Universal quantifier "For all..."
- If φ is a formula, then ∃X(φ) is also a formula
 Asserts that there is an object such that, if X is bound to it, φ becomes true
- If φ is a formula, then ∀X(φ) is also a formula Asserts that φ is true for every single binding of X

• Implication — "if ... then"

$$\phi_1 \rightarrow \phi_2$$
 means $\neg \phi_1 \lor \phi_2$

• Double (bi-directional) implication — "if and only if"

$$\phi_1 \leftrightarrow \phi_2$$
 means $(\phi_1 \rightarrow \phi_2) \land (\phi_2 \rightarrow \phi_1)$

Standard rules for connective precedence apply, i.e. $\phi_1 \land \phi_2 \lor \phi_3$ is $(\phi_1 \land \phi_2) \lor \phi_3$

- Formulas ban be built up recursively, can be arbitrarily complex
- Syntactically distinct formulas may be logically equivalent

 $\forall X, Y(elephant(X) \land teacup(Y) \rightarrow larger_than(X, Y))$ $\forall X, Y(teacup(Y) \land elephant(X) \rightarrow larger_than(X, Y))$

• The purpose of semantics is to capture this equivalence and, more generally, to make sense of complex formulas

• Semantics = a formal mapping from formulas to semantic entities (individuals, sets, relations and functions over individuals)

meaning : {formulas} \mapsto {set-theoretic notions}

• This mapping mirrors the recursive nature of the syntax. Thus, we can give any formula (no matter how complex) a mapping to semantic entities

First, we fix the language. The language ${\cal L}$ is defined by its primitive symbols: the sets ${\cal F}, {\cal P}, {\cal V}$

- *F* a set of function symbols (inc. constants)
 Each symbol *f* ∈ *F* has a particular arity
- \mathcal{P} a set of predicate and relation symbols Each symbol $p \in \mathcal{P}$ has a particular arity
- \mathcal{V} an infinite set of variables

An **interpretation** (structure) is a tuple $\langle \mathcal{D}, \Phi, \Psi, \nu \rangle$, where

- \mathcal{D} is a non-empty set (domain of individuals) "universe of discourse"
- Φ: F → (D^k → D) maps every k-ary function symbol f ∈ F to a k-ary function over D
 Careful: f is a symbol, Φ(f) is the corresponding function over the domain
- Ψ : P → (D^k → {true, false}) maps every k-ary predicate symbol p ∈ P to an indicator function over k-ary tuples of individuals
- $\nu : \mathcal{V} \mapsto \mathcal{D}$ is a variable assignment function. Simply maps every variable to some domain object.

- (Underlined symbols denote domain individuals to avoid confusion. They are not symbols of the language)
- Domains are usually infinite, but let's use finite ones to prime our intuitions

 $\mathsf{Recall:} \ \Phi: \mathcal{F} \mapsto (\mathcal{D}^k \mapsto \mathcal{D})$

Given a k-ary function $f \in \mathcal{F}$ and k individuals, $\Phi(f)$ tells us what $f(d_1, \ldots, d_k)$ is.

- 0-ary functions (constants) are mapped to specific individuals in \mathcal{D} $\Phi(client17) = \underline{craig}, \Phi(rome) = \underline{rome}$
- 1-ary functions are mapped to functions in $\mathcal{D} \mapsto \mathcal{D}$ $\Phi(min_quality) = f_{min_quality}, f_{min_quality}(\underline{craig}) = \underline{3_stars}$
- 2-ary functions are mapped to functions in $\mathcal{D}^2 \mapsto \mathcal{D}$ $\Phi(distance) = f_{distance}, f_{distance}(toronto, sienna) = 3256$
- And so on for *n*-ary functions

Recall: $\Psi : \mathcal{P} \mapsto (\mathcal{D}^k \mapsto \{true, false\})$

Given a k-ary predicate $p \in \mathcal{P}$ and k individuals, $\Psi(p)$ tells us whether the relation denoted by p holds for these particular individuals.

- 0-ary predicates are mapped to true or false $\Psi(rainy) = True, \Psi(sunny) = False$
- Unary predicates are mapped to indicator functions of subsets of \mathcal{D} $\Psi(satisfied) = p_{satisfied}, p_{satisfied}(\underline{craig}) = True$
- Binary predicates are mapped to indicator functions of subsets of D^2 $\Psi(location) = p_{location}, p_{location}(grandhotel, rome) = True,$ $p_{location}(grandhotel, sienna) = False$
- And so on for *n*-ary predicates

- Only takes care of quantification. The exact mapping it specifies does not really matter, as we will see later.
- Notation: ν[X/d] is a new variable assignment function, which is exactly just like ν except that it maps the variable X to the individual d. Otherwise, ν(Y) = ν[X/d](Y).

Given a language $\mathcal L$ and an interpretation $\mathcal I=\langle \mathcal D,\Phi,\Psi,\nu\rangle$,

- Constant c denotes an individual $\mathcal{I}(c) = \Phi(c) \in \mathcal{D}$
- Variable X denotes an individual $\mathcal{I}(X) = \nu(X) \in \mathcal{D}$
- A complex term $t = f(t_1, ..., t_k)$ denotes an individual $\mathcal{I}(t) = \Phi(f)(\mathcal{I}(t_1), ..., \mathcal{I}(t_k)) \in \mathcal{D}$ We recursively find the denotation of each term and then apply the

function denoted by f to get the individual. Thus, **terms always denote individuals** under an interpretation \mathcal{I}

Next time: FOL Semantics continued, examples of interpretations