
Assignment 3

EECS 3401 A

November 25, 2020

This assignment is due on December 7 (Monday) at 23:59.

Your report for this assignment should be the result of your own individual work.

Question 1 [40 points] — Belief Networks

Consider the following example:

Metastatic cancer is a possible cause of a brain tumour and is also an explanation for
an increased total serum calcium. In turn, either of these could cause a patient to fall
into an occasional coma. Severe headache could also be explained by a brain tumour.

(a) Represent these causal links in a belief network. Use the following glossary:

a = “metastatic cancer”

b = “increased total serum calcium”

c = “brain tumour”

d = “occasional coma”

e = “severe headaches”

(b) Give an example of an independence assumption that is implicit in this network.

(c) Suppose that the following probabilities are given:

Pr(a) = 0.2

Pr(b | a) = 0.8

Pr(c | a) = 0.2

Pr(e | c) = 0.8

Pr(d | b, c) = 0.8

Pr(d | b,¬c) = 0.8

Pr(b | ¬a) = 0.2

Pr(c | ¬a) = 0.05

Pr(e | ¬c) = 0.6

Pr(d | ¬b, c) = 0.8

Pr(d | ¬b,¬c) = 0.05

and assume that it is also given that some patient is suffering from severe headaches but
has not fallen into a coma. Calculate the joint probabilities for the eight remaining
possibilities (that is, according to whether a, b, and c are true or false).

(d) According to the numbers given, the a priori (prior) probability that the patient has metastatic
cancer is 0.2. Given that the patient is suffering from severe headaches but has not fallen into
a coma, are we now more or less inclined to believe that the patient has cancer? Justify
your answer.

Put your answer to Question 1 in a PDF file called a3q1.pdf.

1

Question 2 [70 points] — GOLOG

Note!
You are provided with starter code in a3q2.prolog. Please write your code there.
Refer to the included file simple elevator.prolog for inspiration.
For parts (c)–(e), refer to the GOLOG tutorial at the end of this document.

Consider Shakey’s world:1

corridor

room1 room2 room3 room4

door1 door2 door3 door4

..

Shakey

box1
box2

box3
box4

switch1 switch2 switch3 switch4

Shakey can move between landmarks within a room, can pass through the door between rooms,
can climb boxes, can push boxes around, and can flip light switches (but needs to stand on a box
to reach them).

(a) Develop a Prolog implementation of a situation calculus action theory for Shakey’s world
as described above. Put all your code in file a3q2.prolog.

Write a precondition axiom for each action and a successor state axiom for each fluent.
Also write axioms describing the initial state pictured above.

Assume there is a light in each room (except the corridor), and that it is on if the switch is
up. For the initial location of the robot, use a constant such as locInitRobot , and similarly
for the boxes and switches. Since Shakey is able to climb boxes, use a constant floor to

denote when Shakey is not on a box, e.g., onTop(floor,S) .

Use the following primitive actions:

• go(Loc1,Loc2) : go from location Loc1 to location Loc2 . This is possible if Shakey

is at location Loc1 and on the floor (as opposed to on a box), and both locations Loc1

and Loc2 are in the same room. A door between two rooms is considered to be in both
rooms.

• push(B,Loc1,Loc2) : push a box B from location Loc1 to location Loc2 within the

same room. Must ensure that B is a box, both locations belong to the same room, both
Shakey and the box are at location Loc1 , and Shakey is not on a box.

1The original STRIPS planner was designed to control Shakey the robot. The problem is adapted here from
problem 10.4 in 3rd ed. of Russell & Norvig.

2

• climbUp(B) and climbDown(B) : climb onto box B ; climb down from box B . Must

ensure that B is a box, that the locations match, and that Shakey is where he is supposed
to be in order for the action to make sense.

• turnOn(Sw) and turnOff(Sw) : turn a light switch Sw on or off. To do this, Shakey

must be on top of a box B , and the box must be at the light switch’s location.

Use the following fluents:

• robotLoc(Loc, S) : Shakey is at location Loc in situation S

• boxLoc(Box, Loc, S) : box Box is at location Loc in situation S

• onTop(B, S) : Shakey is on top of B in situation S . B could be a box or floor .

• up(Sw, S) : switch Sw is up in situation S

• onn(Light, S) : light Light is on in situation S

Use the following non-fluent predicates:

• in(Loc, R) : location Loc is in room R

• controls(Sw, Light) : switch Sw controls the light Light

• box(B) : B is a box

• and any others you might need.

(b) Suppose that we want to achieve the goal of having box2 in room2 . Express this goal as
a situation calculus sentence. Specifically, implement the predicate

goalPartB(S) :- /* your goal here */

Also write a ground situation term that represents a plan that achieves this goal when
executed in the initial state (pictured above). Have the following predicate succeed with S

bound to the plan:

solPartB(S) :- /* describe S here */

Use your Prolog implementation of the action theory in (a) to confirm that the plan is
executable (legal)2 and achieves the goal. Put your log in the file a3q2tests.txt.

(c) Write a GOLOG program that represents the plan in (b) (as a sequence of primitive ac-
tions) and show that it can be executed successfully (put your execution log in the file
a3q2tests.txt). Use the supplied GOLOG interpreter.

(d) Write a GOLOG procedure allLightsOn that can be executed to turn on all the lights.
The procedure should always terminate successfully and should succeed in turning on all the
lights as long as a there is a box in some room that can be used by the robot to reach the
switch. Run your procedure and show (save the log in the file a3q2tests.txt) that it can
be executed successfully in the initial situation and that all the lights are on in the resulting
situation. Your code should define sub-procedures as appropriate and not be unnecessarily
complex.

2Look at the bottom of the starter code for a complete implementation of executable.

3

(e) Use the GOLOG iterative deepening planning procedure (in the GOLOG interpreter file) to
generate a plan to achieve the goal of having box2 in room2 . For the search procedure

to find a solution, you will have to define the forward filtering fluent acceptable(A, S)

appropriately. Try using the following task-specific heuristics:

i) until the robot is at the location of box2 , go is the only acceptable action, and

ii) once the robot is at the location of box2 , push applied to box2 is the only acceptable
action.

Save the execution log in a3q2tests.txt. Document your code appropriately.

To hand in your report for this assignment, put the files a3q1.pdf, a3q2.prolog, and a3q2tests.txt

in a ZIP archive called a3answers.zip and submit it through eClass by the deadline.

GOLOG Tutorial

The important bit to remember is that a GOLOG program is a complex action, i.e., a syntactic
structure which describes, at a high level of abstraction, a legal sequence (generally, many possible
sequences) of primitive actions. A GOLOG procedure is simply a complex action which is defined
under a specific name, so that the programmer can refer to it by name.

The GOLOG interpreter provided to you in the file golog swi.prolog is written in Prolog.
Thus, when programming in GOLOG, we end up writing a logical program within a logical program,
which is confusing (to say the least). To keep the two levels separate, GOLOG programs are written
as Prolog terms—not predicates. Moreover, GOLOG uses a custom-made language—not Prolog—
for writing logical formulas (which can appear as parts of complex actions, see examples below).
At the same time, the Situation Calculus theory describing the domain of application is written
natively in Prolog (so that the queries about the domain could be evaluated using the built-in
SLDNF-resolution), and the GOLOG code has to interface with it somehow. Specifically, when
a GOLOG program needs to evaluate a logical formula φ (written in its custom language), the
GOLOG interpreter converts φ to a Prolog query and uses Prolog to prove it.

Example A complex action is a syntactical structure such as if(hungry,eat,sleep) con-
structed according to the formal grammar. The meaning behind any such structure is implemented
in the Prolog predicate do(A,S,S1) . To execute a complex action (or a procedure) starting in

situation s0 , you need to pose a Prolog goal

?- do(if(hungry,eat,sleep), s0, S).

S = do(eat, s0)

This goal succeeds and binds S to a concrete sequence of primitive actions which represents the

execution of the program if(hungry,eat,sleep) .
But how did Prolog know that this is a legal execution? That’s because I also loaded the
following code:

hungry(s0).

primitive_action(eat).

primitive_action(sleep).

poss(sleep,_).

4

poss(eat,_).

restoreSitArg(hungry,S,hungry(S)).

This code constitutes a very simple situation calculus theory and every single line here is necessary.
Specifically, I’ve defined hungry as a fluent which holds in s0 , declared two primitive actions,

and wrote trivial preconditions for them. The last line here tells GOLOG that hungry is a fluent

(as opposed to a regular predicate) and how to add/remove its situation argument. This is an
important technical peculiarity of the GOLOG interpreter: when referring to a fluent
from within a complex action, you should omit its situation term. When GOLOG gets down to
evaluating that fluent, it will restore the situation argument (according to how you tell it to in
restoreSitArg) and will use your situation calculus theory for proof. The reason we don’t want
to have situation arguments inside a complex action is the fact that the complex actions occur
inside the do(_, S, S1) predicate, which has its own way to keep track of situations.

The semantics of the conditional in this example (and in general) is defined in the GOLOG
interpeter as

do(if(P,E1,E2),S,S1) :- do((?(P) : E1) # (?(-P) : E2),S,S1).

which can be understood as

To execute if(P,E1,E2) , non-deterministically choose between and execute either

[prove that P is true and then do action E1] or [prove that P is false and do action
E2].

Obviously, the two nondeterministic choices are mutually exclusive (P cannot be true and false at
the same time), so there is only one way to execute this conditional, which depends on whether
P can be proved or not. In our example, P is hungry . From the fact that we’ve defined

restoreSitArg for hungry , GOLOG knows it to be a fluent, so it restores the situation term,

obtaining hungry(S) , substitutes the starting situation from do , obtaining hungry(s0) , and

finally poses it as a Prolog query ?- hungry(s0). which succeeds, which means that the next

step of execution is do(eat, s0, S) .

Full grammar and semantics of do(...) In file golog swi.prolog, you can see the imple-

mentation of do(A,S,S1) together with the grammar for complex actions on lines 57–65:

57 do(E1 : E2,S,S1) :- do(E1,S,S2), do(E2,S2,S1). % simple sequence

58 do(?(P),S,S) :- holds(P,S). % prove FOL formula P, stay in same situation

59 do(E1 # E2,S,S1) :- do(E1,S,S1) ; do(E2,S,S1). % nondet. choice of action

60 do(if(P,E1,E2),S,S1) :- do((?(P) : E1) # (?(-P) : E2),S,S1). % if-else

61 do(star(E),S,S1) :- S1 = S ; do(E : star(E),S,S1). % repeat action E zero+ times

62 do(while(P,E),S,S1):- do(star(?(P) : E) : ?(-P),S,S1). % while loop

63 do(pi(V,E),S,S1) :- sub(V,_,E,E1), do(E1,S,S1). % nondet. choice of value

64 do(E,S,S1) :- proc(E,E1), do(E1,S,S1). % execute procedure named E

65 do(E,S,do(E,S)) :- primitive_action(E), poss(E,S). % exec. primitive action

5

FOL syntax in GOLOG In the grammar above, the variable P always denotes a FOL condition
on the starting situation. These FOL conditions can be formulated over

• all of your non-fluent Prolog predicates, and

• all fluent predicates, but with the situation argument removed (“suppressed”),

using the logical connectives and quantifiers defined on lines 79–92 of the interpreter in the predicate
holds(P,S) . This predicate is the semantic link between this custom FOL language and native

Prolog. Given a custom FOL formula, holds(P,S) converts it to a set of Prolog goals and tries
to prove them using the underlying situation calculus theory.

Namely, you can form the following kinds of expressions:

• P & Q — conjunction P ∧Q
• P v Q — disjunction P ∨Q
• P => Q — implication P → Q

• P <=> Q — bidirectional implication P ↔ Q

• -P — negation ¬P
• all(V,P) — universal quantification ∀V (P)

• some(V,P) — existential quantification ∃V (P)

Some examples of FOL conditions

• -onTop(floor) — “Shakey is not on the floor”. Note that onTop is a fluent, but we are
“suppressing” its situation argument.

• all(l,isLight(l) => on(l) — “All lights are turned on”. Important: GOLOG requires

you to use constants to represent quantified variables. This applies to both all and some .

Writing all(X,isLight(X) => on(X) is wrong.

• l = d — “quantified variables l and d are equal”. You can use = to denote FOL equality.

• some(r,in(L,r) & in(d,r)) — “There exists a (room?) r such that L and d are both
in it”. Note: r is a quantified “variable”, d could be either another quantified variable
(quantified from outside, not shown here) or a variable obtained through non-deterministic
choice of value as per line 63 (through the complex action pi(d, E)), and L is a true Prolog
variable. Prolog variables may appear inside FOL conditions only if that condition is a part
of a complex action which defines/implements a GOLOG procedure which takes L (or other
variables) as an argument (see below).

An example of a procedure Consider a world which contains things that can be put on top
of one another.

primitive_action(put(A,B)). % put thing A on thing B

poss(put(A,B),S) :- \+on(A,B,S).

thing(cat).

thing(duck).

thing(lizard).

6

on(cat, duck, s0). % Initial state

on(X,Y,do(A,S)) :- A = put(X,Y); on(X,Y,S). % Successor state axiom

restoreSitArg(on(A,B), S, on(A,B,S)).

Let’s define a procedure to pick some thing at random and put it on top of X :

proc(put_something_on_top_of(X),

if(some(a, thing(a) & -(a=X) & -on(a,X)),

pi(a, ?(thing(a) & -(a=X) & -on(a,X)) : put(a, X)),

?(true)

)

).

% execution:

?- do(put_something_on_top_of(duck),s0,S).

S = do(put(lizard, duck), s0)

This procedure is a conditional which tests (using a FOL sentence) whether there exists a thing
distinct from X which is not on top of X in the starting situation. If so, the then-clause uses

pi(a, ...) to bind a to something, proves that the binding is a thing which is not on X (if

proof fails, Prolog backtracks and tries a different binding for a), and finally puts a on top of X

using a primitive action. The else-clause is a tautology and is equivalent to doing nothing.
Next, let us define a procedure which calls the first procedure and uses iteration:

proc(put_all_things_on_top_of(X),

?(all(v, thing(v) & -(v=X) => on(v,X))) #

(put_something_on_top_of(X) : put_all_things_on_top_of(X))

).

% execution:

?- do(put_all_things_on_top_of(cat),s0,S).

S = do(put(lizard, cat), do(put(duck, cat), s0))

This uses recursion similarly to how Prolog does it. The body of the procedure is a non-deterministic
choice of an action. The first choice is to prove that all things are already on top of X . If that
succeeds, the procedure terminates in the same situation it started, and if that fails (i.e., there are
some things still not on top of X), the interpreter is forced to try the second choice, which is a
sequence involving a call to the first procedure and then a recursive call to the current procedure.

For more examples, study the provided file simple elevator.prolog.

7

