
1

EECS2031M

W 2020

Mar 17, 2020 Lecture 19

Software Tools

• Pointers (Ch5)

▪ Basics: Declaration and assignment (5.1)

▪ Pointer to Pointer (5.6)

▪ Pointer and functions (pass pointer by value) (5.2)

▪ Pointer arithmetic +- ++ -- (5.4)

▪ Pointers and arrays (5.3)

o Stored consecutively

o Pointer to array elements p + i = &a[i] *(p+i) = a[i]

o Array name contains address of 1st element a = &a[0]

o Pointer arithmetic on array (extension) p1-p2 p1<>!= p2

o Array as function argument – “decay”

o Pass sub_array

▪ Array of pointers (5.6-5.9)

▪ Command line arguments (5.10)

▪ Memory allocation (extra)

• Structures (Ch6)

▪ Pointer to structures (6.4)

▪ Self-referential structures (extra)

Previous
lecture

1

2

2

• What if we do not know how large our array should be?

• In other words, we need to be able to allocate memory at

run-time (i.e. while the program is running)

• How?

int n;

scanf("%d", &n);

int my_array[n]; /* but not allowed in ANSI-C */

3

gcc –ansi –pedantic-errors varArray.c

ISO C90 forbids variable length array ‘my_array’

gcc –ansi -pedantic varArray.c

Dynamic memory allocation

scenario / motivation 1

4

<string.h>

strlen(s)

strcpy(s,s)

strcat(s,s)

strcmp(s,s)

<ctype.h>

int islower(int)

int isupper(int)

int isdigit(int)

int isxdigit(int)

int isalpha(int)

int tolower(int)

int toupper(int)

<stdlib.h>

double atof(s)

int atoi(s)

long atol(s)

void rand()

void system()

void exit()

int abs(int)

void* malloc()

void* calloc()

void* realloc()

void free()

<math.h>

sin() cos()

exp()

log()

pow()

sqrt()

ceil()

floor()

Common library functions

[Appendix of K+R]

<assert.h>

assert()

<stdio.h>

printf()

scanf()

getchar()

putchar()

sscanf()

sprintf()

gets() puts()

fgets() fputs()

fprintf()

fscanf()

3

4

3

malloc()

• "stdlib.h" defines:

void * malloc (int n);

• allocates memory at run-time

• returns a void pointer to the memory that has at least n

bytes available (just allocated for you).

▪ Address of first byte e.g., 1000

▪ Can be casted to any type

5

1000 1001 1002 1003 1004 ….

malloc()

#include <stdlib.h>

int main() {

int *p; // uninitialized, not point to anywhere

*p = 52;

printf("%d\n", *p);

}

6

segmentation fault

core dump

5

6

4

Whenever you need to set a pointer’s pointee

e.g.,

▪ *ptr = var;

▪ scanf("%s", ptr);

▪ strcpy(ptr, "hello");

▪ fgets(ptr, 10, STDIN);

▪ ……

▪ *ptrArr[2] = var; // pointer array

Ask yourself: Have you done one of the following

1. ptr = &var. /* direct */ var must not

arr[20]; ptr=&arr[0];variable

2. ptr = ptr2 /* indirect, assuming ptr2 is good */

3. ptr = (..)malloc(....) /* last lecture */

7

malloc()

#include <stdlib.h>

int main() {

int *p, x;

p = &x;

*p = 52; // x=52

printf("%d\n", *p);

}

8

00000000 00000000 00000000 0011 0100

fix1

7

8

5

malloc()

#include <stdlib.h>

int main() {

int *p, x;

int *p2 = &x; p = p2;

*p = 52; // x=52

printf("%d\n", *p);

}

9

00000000 00000000 00000000 0011 0100

fix2

malloc()

#include <stdlib.h>

int main() {

int *p;

p = (int *) malloc(4);

*p = 52;

printf("%d\n", *p);

}

• Note: type conversion (cast) on result of malloc

p = malloc(4); also works. Will convert
10

fix3

00000000 00000000 00000000 0011 0100

9

10

6

malloc()

#include <stdlib.h>

int main() {

int n; int *p;

printf("# of elements in array: ");

scanf("%d", &n);

p = (int *)malloc(n * sizeof(int)); //or

(p = (int *)calloc(n , sizeof(int));

if (p == NULL)

exit(0);

*p = 1; // store 1 at address 1000 (1000~1003)

*(p+1) = 2; // p+1 = 1004 store 2 at address 1004

*(p+2) = 12; // p+2 = 1008 store 12 at address 1008

} pointer arithmetic!!!

• free (p);
11

7

-1

1000 1004 1008 1012 1016 1020 1024

1 2 12

1024 1025 1026 1027

4n bytes allocated.

n=7 28 bytes 1000~1027 allocated

p+2p+1

malloc()

#include <stdlib.h>

int main() {

int n; char *p;

printf("length of array: ");

scanf("%d", &n);

p = (char *)malloc(n * sizeof(char)); //or

p = (char *)calloc(n , sizeof(char));

(

if (p == NULL)

exit(0);

strcpy(p, "abc");

*(p+1) = 'x’;

printf("%s", p); // axc

printf("%d", strlen(p)); // 3

}

1
2

-1

1000 1001 1002 1003 1004 1005 1006

n bytes allocated.

n=7 7 bytes 1000~1006 allocated

p+2p+1

p+1

-1

-1

11

12

7

More on memory allocation

• We know the syntax

• But when to use it ?????

▪ When need to allocate at run time, of course

▪ What else?

• Another feature of malloc -- request for heap space!

13

14

0

1

2

100

What is wrong

here??

*arr[index] = 100;

13

14

8

15

0

1

2

i 100

What is wrong

here??

16

0

1

2

i 100

i is local variable,

lifetime is block/function

-- i is in stack, where it is

deallocated when

function exits !!!

15

16

9

Stack vs. Heap

• Local (stack) memory, automatic

▪ Allocated on function call, and deallocated

automatically when function exits

• Dynamic (heap) memory

▪ The heap is an area of memory available to allocate areas
("blocks") of memory for the program.

▪ Not deallocated when function exits

▪ Request a heap memory: malloc/calloc in C, new in
Java

17

What we need!

Global, static

variables

Local variables

How to allocate in heap then?

Stack vs. heap

• Local (stack) memory, automatic
▪ Allocated on function call, and deallocated automatically when

function exits

• Dynamic heap memory
▪ The heap is an area of memory available to allocate areas ("blocks")

of memory for the program.

▪ Not deallocated when function exits.

▪ Request a heap memory:

o malloc() / calloc() / realloc() in C

o new in C++ and Java
• Student s = new Student();

▪ Deallocate from heap memory:
o free() in C,

o delete in C++

o garbage collection in Java
18

What we need!

17

18

10

Stack vs. heap

• Local (stack) memory, automatic
▪ Allocated on function call, and deallocated automatically when

function exits

• Dynamic heap memory
▪ The heap is an area of memory available to allocate areas ("blocks")

of memory for the program.

▪ Not deallocated when function exits.

▪ Request a heap memory:

o malloc() / calloc() / realloc() in C

o new in C++ and Java
• Student s = new Student();

▪ Deallocate from heap memory:
o free() in C,

o delete in C++

o garbage collection in Java
19

What we need!

Stack vs. heap

• Local (stack) memory, automatic
▪ Allocated on function call, and deallocated automatically when

function exits

• Dynamic heap memory
▪ The heap is an area of memory available to allocate areas ("blocks")

of memory for the program.

▪ Not deallocated when function exits.

▪ Request a heap memory:

o malloc() / calloc() / realloc() in C

o new in C++ and Java
• Student s = new Student();

▪ Deallocate from heap memory:
o free() in C,

o delete in C++

o garbage collection in Java
20

What we need!

19

20

11

Stack vs. heap

• Local (stack) memory, automatic
▪ Allocated on function call, and deallocated automatically when

function exits

• Dynamic heap memory
▪ The heap is an area of memory available to allocate areas ("blocks")

of memory for the program.

▪ Not deallocated when function exits.

▪ Request a heap memory:

o malloc() / calloc() / realloc() in C

o new in C++ and Java
• Student s = new Student();

▪ Deallocate from heap memory:
o free() in C,

o delete in C++

o garbage collection in Java
21

What we need!

22

Correct implementation

// 100

21

22

12

23

Correct implementation

// 100

100

or int i=100; *(arr[index])=i;

24

This program works.

a,b,c,d,e are local variables, in stack, but not deallocated before

program terminates

23

24

13

• Pointers (Ch5)

▪ Basics: Declaration and assignment (5.1)

▪ Pointer to Pointer (5.6)

▪ Pointer and functions (pass pointer by value) (5.2)

▪ Pointer arithmetic +- ++ -- (5.4)

▪ Pointers and arrays (5.3)

o Stored consecutively

o Pointer to array elements p + i = &a[i] *(p+i) = a[i]

o Array name contains address of 1st element a = &a[0]

o Pointer arithmetic on array (extension) p1-p2 p1<>!= p2

o Array as function argument – “decay”

o Pass sub_array

▪ Array of pointers (5.6-5.9)

▪ Command line arguments (5.10)

▪ Memory allocation (extra)

• Structures (Ch6)

▪ Pointer to structures (6.4)

▪ Self-referential structures (extra)

today

EECS2031 – Software Tools

C - Structures, Unions, Enums & Typedef (K+R Ch.6)

25

26

14

Structures

• A collection of one or more variables grouped under a

single name for easy manipulation

• The variables can be of different types

▪ Primitive data types, arrays, pointers and other structure

• For more complex types

• Encapsulate data

▪ and its instance -- object

• Only contains data (no functions).

27

int x;

int y;

float speed;

int directionX;

int directionY;

Structures

• Basics: Declaration and assignment

• Structures and functions

• Pointer to structures

• Arrays of structures

• Self-referential structures (e.g., linked list, binary trees)

• Unions

28

27

28

15

Structures

struct {

float width;

float height;

} chair; , table;

struct {

float width;

float height

} is the type // like int a;

chair is variable name.

29

struct {

float width;

float height;

} table;

Need to repeat

Structure Names

• Give a name (tag) to a struct, so we can reuse it:

struct shape {

float width;

float height;

};

struct shape chair, chair2; /* like int i, j */

struct shape table;

shape table;
30

struct shape is a valid type

29

30

16

Structures

access members, initialization, operations (. = &)

. = &
• use the “.” operator to access members of a struct

chair.width = 10;

table.height = chair.width + 2;

• can also use assignment with struct variables (same type)

chair = table; /* valid. But diff from Java! */

/* copy members */

• can take address as well

&chair

31

Array arr2 = arr1

No == != …

Operator Type Operator Associativity

Primary Expression
Operators

() [] . -> left-to-right

Unary Operators
* & + - ! ~ ++ --
(typecast) sizeof

right-to-left

Binary Operators

* / % arithmetic

left-to-right

+ - arithmetic

>> << bitwise

< > <= >= relational

== != relational

& bitwise

struct shape chair = {2,4}; // approach 1

struct shape chair;

chair.width = 2;

chair.height = 4;

chair2 = chair; // copy members values only

// different from Java

printf(“%d %d”, chair2.width, chair2.height);

chair2.width = 20; // does not affect chair
32

approach 2

struct myshape {

int data;

float arr[3];

};

struct myshape s2 = {2, {1.5, 2.5}}; //approach 1

(s2.arr)[2] = 3.3; // approach 2 set directly

width height

Size of struct not necessarily the
sum of its elements. Use sizeof()

struct shape {

float width;

float height;

};

associativity

Structures
access members, initialization, operations (. = &) . = &

31

32

17

• use the “.” operator to access members of a struct

chair.width = 10;

table.height = chair.width + 2;

• can also use assignment with struct variables (same type)

chair2 = chair; /* valid. copy members value */

/* Different from Java! */

• can take address as well

&chair

33

Recall: Array cannot assign

arr2 = arr1

No == != > <
…

Structures
access members, initialization, operations (. = &) . = &

struct shape chair = {2,4}; // approach 1

struct shape chair2 = chair; // copy members values only.

// different from Java

printf("%d %d", chair.width, chair.height);

printf("%d %d", chair2.width, chair2.height);

chair2.width = 20; // does not affect chair

printf("%d %d", chair.width, chair2.width);
34

2 4

2 20

42

width height

chair2.width = chair.width

chair2.height = chair.height

Structures
access members, initialization, operations (. = &) . = &

?What if an element is a pointer ?

33

34

18

Precedence
Operator Type Operator Associativity

Primary Expression
Operators

() [] . -> associativity

Left to right
left-to-right

Unary Operators
* & + - ! ~ ++ --
(typecast) sizeof

right-to-left

Binary Operators

* / % arithmetic

left-to-right

+ - arithmetic

>> << bitwise

< > <= >= relational

== != relational

& bitwise

^ bitwise

| bitwise

&& logical

|| logical

Ternary Operator ?: right-to-left

Assignment Operators
= += -= *= /= %= >>= <<= &=
^= |=

right-to-left

Comma , left-to-right

s2.arr[2] =3

*d).width

scanf("%f",

&chair2.width)

(* ptr).width

&(chair2.width)

later

No () needed

Nested Structures

struct point {

int x;

int y; };

struct rect {

struct point pt1;

struct point pt2;

};

struct rect screen;

screen.pt1.x = 1;

screen.pt2.x = 8;

(screen.pt2).y = 7;

36

Associativity

left to right

35

36

19

Structures vs. Arrays (so far)

• Both are aggregate (non-scalar) types in C -- type of data that can
be referenced as a single entity, and yet consists of more than
one piece of data.

• Both cannot be compared using == != > <

• Array: elements are of same type

Structure: elements can be of different type

• Array: element accessed by [index/position] arr[1] = 3;

Structure: element accessed by .name chair.width = 4

• Array: cannot assign as a whole arr2 = arr1

Structure: can assign/copy as a whole chair2 = chair1

• Array: size is the sum of size of elements

Structure: size not necessarily the sum of size of elements
37

Diff from Java

use sizeof

Structures

• Basics: Declaration and assignment

• Structures and functions

• Pointer to structures

• Arrays of structures

• Self-referential structures (e.g., linked list, binary trees)

• Unions

38

37

38

20

Structure and functions

-- Structures as arguments

• You can pass structures as arguments to functions

main(){

struct shape s = {1,3};

float f = get_area(s);

}

float get_area(struct shape d) // shape as argument

{

return d.width * d.height;

}

• This is call-by-value -- a copy of the struct is made

▪ d is a copy of the actual parameter (copy member values)

▪ No starting address, no “decay”

▪ Function can not change the passed struct39

call-by-value

d = s // copy members

d.width = s.width

d.height = s.height

• You can pass structures as arguments to functions

main() {

struct shape s = {1,2};

do_sth(s) /* s is not modified */

}

void do_sth(struct shape d)

{

d.width += 100;

d.height += 200;

}

• This is call-by-value - a copy of the struct is made

▪ Function cannot change the passed struct40

Structure and functions

--Structures as arguments

call-by-value

d = s // copy members

d.width = s.width

d.height = s.height

39

40

21

structure and functions

-- structures as Return Values

• structs can be used as return values for functions as well

struct shape make_dim(int width, int height)

{

struct shape d; // in stack

d.width = width;

d.height = height;

return d;

}

main(){

struct shape myShape = make_dim(3,4);

}

41

// myShape = d;

Copy members, d is gone (deallocated) afterwards

Structures

• Basics: Declaration and assignment

• Structures and functions

• Pointer to structures

• Arrays of structures

• Self-referential structures (e.g., linked list, binary trees)

• Unions

42

41

42

22

structure and functions

-- Structure Pointers

• call-by-value is inefficient for large structures: not decayed

▪ use pointers (explicitly) !!!

• This also allows to change the passing struct

main(){

struct shape s = {1,3};

struct shape * ptrS = &s; // pointer to struct shape

float f = get_area(ptrS); // float f = get_area(&s);

}

float get_area(struct shape *p)

{

return (*p).width * (*p).height;

}
43

Expect a pointer to
struct shape

width

height
p *

ptrS * s

Assess member via
pointer

structure and functions

-- Structure Pointers

• call-by-value is inefficient for large structures: not decayed

▪ use pointers (explicitly) !!!

• This also allows to change the passing struct

main(){

struct shape s = {1,3};

struct shape * ptrS = &s; // pointer to struct shape

float f = get_area(ptrS); // float f = get_area(&s);

}

float get_area(struct shape *p)

{

return (*p).width * (*p).height;

}
44

Expect a pointer to
struct shape

Assess member via
pointer

width

height
p *

ptrS * s

43

44

23

• call-by-value is inefficient for large structures: not decayed

▪ use pointers!!!

• This also allows to change the passing struct

do_sth(&s);

void do_sth(struct shape * p)

{

(*p).width += 100;

(*p).height += 200;

}

• This is call-by-value --- but address – by reference

▪ Function can change the passed struct45

structure and functions

-- Structure Pointers

Pointee s is modified !

width

height
p *

s

void do_sth(struct shape *p){

(*p).width += 100;

}

 Beware when accessing members a structure via its pointer

* p.width --- incorrect

 Operator . takes higher precedence over operator *

(*p).width --- correct

 Accessing member of a structure via its pointer is so
common that it has its own operator

p -> width
46

structure and functions

-- Structure Pointers

width

height
p *

s

45

46

24

structure and functions

-- Structure Pointers

(*p).width

p -> width

main(){

struct shape s = {1,3};

struct shape * ptrS = &s;

do_sth (ptrS); // or do_sth (&s);

}

void do_sth(struct shape *p)

{

p -> width += 100;

p -> height += 200;

}

47

width

height
p *

ptrS * s

Equivalent

Precedence and Associativity p53
Operator Type Operator Associativity

Primary Expression
Operators

() [] . -> left-to-right

Unary Operators
* & + - ! ~ ++ --
(typecast) sizeof

right-to-left

Binary Operators

* / % arithmetic

left-to-right

+ - arithmetic

>> << bitwise

< > <= >= relational

== != relational

& bitwise

^ bitwise

| bitwise

&& logical

|| logical

Ternary Operator ?: right-to-left

Assignment Operators
= += -= *= /= %= >>= <<= &=
^= |=

right-to-left

Comma , left-to-right

x -> data = 2;

int * p;

p = &x -> data;

= &(x -> data);

x -> data += 2;

() never needed!

47

48

25

void do_sth(struct shape *p){

p -> width += 100; // (*p).width += 100;

p -> height += 200; // (*p).height+= 200;

}

49

. works with structures, accessing members

-> works with structure pointers, accessing members

struct shape{

int width; int height;

} s, *p;

s.width; valid s -> width; invalid

p.width; invalid p -> width; valid

structure and functions

-- Structure Pointers width

height
p *

s

Pointers to Structures: Shorthand

 (*pp).x can be written as pp -> x

printf("origin is (%d,%d)\n", pp->x, pp->y);

struct rect r, *rp = &r;

r.pt1.x = 1;

(*rp).pt1.x = 1; access pt1.x

rp -> pt1.x = 1;

(r.pt1).x = 3;

(rp->pt1).x = 4;

 Note: Both . and -> associate from left to right.
50

struct point {

int x;

int y; };

struct rect {

struct point pt1;

struct point pt2;

};

Associativity left
to right

49

50

26

Pointer to structures -- malloc/calloc

struct shape * ptable; // pointer to struct shape

ptable = malloc (sizeof(struct shape));

// set member value one by one, directly

ptable -> width = 1.0; // (* ptable).width = 1.0

ptable -> height = 5.0; // (* ptable).height = 5.0

or

ptable =(struct shape *) malloc (sizeof(struct shape));

51 When to use? Few slides later

width:

height:
ptable *

300

300

Pointer to structures -- malloc/calloc

struct shape s = {1.0, 5.0};

struct shape * ptable; // pointer to struct shape

ptable = malloc (sizeof(struct shape));

// set member value by copying s, directly

ptable -> width = s.width; // (* ptable).width = ..

ptable -> height = s.height; // (* ptable).height = ..

or

ptable =(struct shape *) malloc (sizeof(struct shape));

52 When to use? Few slides later

width:

height:
ptable *

300

300

51

52

27

Pointer to structures -- malloc/calloc

struct shape s = {1.0, 5.0};

struct shape * ptable; // pointer to struct shape

ptable = malloc (sizeof(struct shape));

// set member value by copying s, directly

* ptable = s;

or

ptable =(struct shape *) malloc (sizeof(struct shape));

53 When to use? Few slides later

width:

height:
ptable *

300

300

Structures vs. Arrays (so far)
• Both are aggregate (non-scalar) types in C -- type of data that can be

referenced as a single entity, and yet consists of more than one piece
of data.

• Both cannot be compared using == != < >

• Array: elements are of same type

Structure: elements can be of different type

• Array: element accessed by [index/position] arr[1] = 3;

Structure: element accessed by .name chair.width = 4

• Array: cannot assign as a whole arr2 = arr1

Structure: can assign/copy as a whole chair2 = chair1

• Array: size is the sum of size of elements

Structure: size not necessarily the sum of size of elements

• Array: decay to pointer when passed to function, can modify

Structure: need ‘&’ to modify (like scalar types int, char, float etc)
54

Diff from Java

53

54

28

Structures

• Basics: Declaration and assignment

• Structures and functions

• Pointer to structures

• Arrays of structures

• Self-referential structures (e.g., linked list, binary trees)

• Unions

55

Arrays of structures -- declaration

• Structures can be arrayed same as the other variables

56

struct shape {

float width;

float height;

};

struct shape chairs[5]; // int arr[5]

//chairs[n] is a structure.

chairs[2].height = 2;

(chairs[2]).width = 3;

Associativity left
to right

array of 5 struct

width

height

width

height

width

height

width

height

0 1 2 3

width

height

4

55

56

29

Array of structures -- Initialization

struct shape sofa = {2.0, 3.0};

struct shape chairs[] = {

{1.4, 2.0},

{0.3, 1.0},

{2.3, 2.0} };

struct shape chairs[10]; //chairs[n] is a struc.

chairs[0].height = 1.4;

(chairs[0]).width = 2.0;

……

float x = chairs[3].height;

`

57
struct shape * chairsA[10]; what is chairsA

Associativity left
to right

Array of structures -- Initialization

struct shape chairs[] = {

{1.4, 2.0},

{0.3, 1.0},

{2.3, 2.0} };

struct shape chairs[10]; //chairs[n] is a struc.

chairs[0].height = 1.4;

(chairs[0]).width = 2.0;

……

float x = chairs[2].height; `

58

struct shape * chairsA[10]; what is chairsA

chairsA[0]

chairsA[1]

chairsA[2]

width

height
chairsA[1] = &s;

s

w 1.4

h 2.0

w

h

w 2.3

h 2.0

w 0.3

h 1.0

0 1 2 3

57

58

30

Structures

• Basics: Declaration and assignment

• Structures and functions

• Pointer to structures

• Arrays of structures

• Self-referential structures (last topic in C)

▪ Structure + pointer to structure + malloc/calloc

▪ e.g., linked list, binary trees

• Unions
59

Next time

today

59

