U

UNIVERSITE
uN

'EECS2031M
Software Tools

* Pointers (Ch5)

= Basics: Declaration and assignment (5.1)

= Pointer to Pointer (5.6)

= Pointer and functions (pass pointer by value) (5.2)

» Pointer arithmetic +- ++ -- (5.4)

= Pointers and arrays (5.3)
o Stored consecutively
o Pointer to array elements p +i=¢&ali] *(p+i) = a]i]
o Array name contains address of 15t element a = &a[0]
o Pointer arithmetic on array (extension) pl-p2 pl<>!=p2
o Array as function argument — “decay”
o Pass sub_array

= Array of pointers (5.6-5.9)

» Command line arguments (5.10)

= Memory allocation (extra) | Previous
lecture

+ Structures (Ch6)
= Pointer to structures (6.4) YORK I '

» Self-referential structures (extra) o

Dynamic memory allocation
scenario / motivation 1

* What if we do not know how large our array should be?

* In other words, we need to be able to allocate memory at
run-time (i.e. while the program is running)

* How?
int n;
scanf ("%d", &n);
int my_array[n]; /*butnotallowedin ANSI-C*/

X

gcc —ansi -pedantic varArray.c
gcc —ansi —-pedantic-errors varArray.c

ISO C90 forbids variable length array ‘my_array’

Common library functions
[Appendix of K+R]

<stdio.h> <string.h> <stdlib.h> <ctype.h>
printf ()
scanf () strlen(s) double atof (s) int islower (int)
getchar () strepy (s, s) int atoi (s) int isupper (int)
putchar () strcat(s,s) long atol(s) ||int isdigit(int)

stremp (s, s) void rand() int isxdigit (int)
sscanf () <math.bh> void system() | | int isalpha (int)
sprintf () sin() cos() void exit ()

exp () int abs (int) int tolower (int)
gets () puts() log () int toupper (int)
fgets () fputs() .

pow () void* malloc() <assert.h>

id*

fprinte () sqrt() void* calloc() assert ()

ceil() void* realloc()
fscanf () :
- floor () void free()

1000 1001 1002 1003 1004

malloc()

* "stdlib.h" defines:
void * malloc (int n);

+ allocates memory at run-time
* returns a void pointer to the memory that has at least n
bytes available (just allocated for you).
= Address of first byte e.g., 1000
= Can be casted to any type

YORK[I

NIVERSITE
5 UNIVERSITY

Dangling Pointers
malloc() p

=

#include <stdlib.h>

int main() {

int *p; // uninitialized, not point to anywhere

*P=52; x
printf ("%d\n", *p);

segmentation fault

core dump

UNIVERSITE '
uulvsnswva

Whenever you need to set a pointer’s pointee
e.g.,

= *ptr = var;

* scanf ("%s", ptr);

= strcpy(ptr, "hello");

= fgets(ptr, 10, STDIN);

= *ptrArr[2] = var; // pointer array

Ask yourself: Have you done one of the following.
1. ptr = &var. /* direct */

arr[20]; ptr=&arr[0];

76y’ 1~

Y

2. ptr = ptr2 /* indirect, assuming ptr2 is good */ .
3. ptr = (..)malloc(....) /* last lecture */
7
malloc() P

335 326 327 328
#include <stdlib.h> X 00000000 00000000 0000000 |0011 0100

int main() {
int *p, x; W fix
P = &x; \!’(
*p = 52; // x=52
printf ("%d\n", *p);

UNIVERSITE '
uulvsnswva

malloc()

#include <stdlib.h>

int main() {

int *p, x;

int *p2 = &x; p = p2;

*p = 52; // x=52
printf ("%d\n", *p);

P h2 1

3;5,/352/ﬂ 327 328

00000000 00000000 0000000 0011 0100

\[fix2

YORK[I

NIVERSITE

UNITVER

SITY

malloc()

#include <stdlib.h>

int main() {
int *p;
p = (int *) malloc(4);
*p = 52;
printf ("$d\n", *p);

10(=r0 1001 1002 1003

00000000 00000000 PO000000 |0011 010!

V{ fix3

* Note: type conversion (cast) on result of malloc

10

p = malloc(4); also works. Will convert YORKu

malloc()
#include <stdlib.h>
int main() {

int n; int *p;
printf ("# of elements

10241025 1026 1027
p+l p+2

b (

004 1008 012 106 1020 N\

10%
1212
0 1 2 3 4 n-1
4n bytes allocated.
. n=7 28 bytes 1000~1027 allocated|
in array: "i;

scanf ("%d", é&n);
p = malloc(n * sizeof(int)); //or
P = calloc(n , sizeof(int));
if (p == NULL)
exit (0) ;
*p = 1; // store 1 at address 1000 (1000~1003)
*(ptl) = 2; // p+l = 1004 store 2 at address 1004
*(pt2) = 12; // p+2 = 1008 store 12 at address 1008
} pointer arithmetic!!!
¢ free (p);
11
malloc()

#include <stdlib.h>

int main() {
int n; char *p;

printf ("length of array:

scanf ("%d4d",
p:
p:

&n) ;
calloc(n

if (p == NULL)
exit(0) ;

strcpy (p, "abe") ;

*(p+l) = 'x’;

printf ("%$s", pP); // axc
printf ("%d4d",

malloc(n * sizeof (char));

strlen(p)); // 3

p+l p+2

IS
1000 1001 1002 1003 1004 1005 1006

_

0

");

n bytes allocated.
7 bytes 1000~1006 allocated

//or

1 2

n="7

, sizeof (char));

p;lTl
'Vx‘c\o‘ 7 I
1

0 2 3 4

More on memory allocation

* We know the syntax

* But when to use it ?7????
= \WWhen need to allocate at run time, of course
= \What else?

YORK

13 UNIVERSITY
#include <stdioc.h>
vold setArr (int);
int * arr[18]; // global, array of 18 int pointers
int main{int argc, char *argv[])
{

setArr(l);

printf({"arr [#¥d] = %d.n", 1, *arr[1]);

return @;
H
/* set arr[index], which is a pointer,
to point to an integer of value 1@@ */
vold setArr (int index){ 0

—_——

*arr[index] = 100;

x 1 ——— 100
1
2

What is wrong
here??

14

#include <stdio.h>
vold setArr (int);
int * arr[l@]; // global, array of 18 int pointers

int main{int argc, char *argv[])

i
setArr(l);
printf{"arr [¥d] = %d\n", 1, *arr[1]);
return @;

}

/* set arr[index], which is a pointer,
to point to an integer of value 188 */

void setArr (int index){ 0
[
int 1 = 188; -
arr[index] = &i; 1 _ 100
}
2 i I

What is wrong
here??

15

#include <stdioc.h>
vold setArr (int);
int * arr[18]; // global, array of 18 int pointers

int main{int argc, char *argv[])

{

setArr(l);

printf({"arr [#¥d] = %d.n", 1, *arr[1]); 0]

return @; | 100
X 1 —
/* set arr[index], which is a pointer, 2 o e

to point to an integer of value 1@@ */
vold setArr (int index){

it i - 100: i_is I_ocal_variable, _

arr[index] = &i; lifetime is block/function
¥ x -- i is in stack, where it is
deallocated when
function exits !

16

4 Stack
StaCk VS. Heap Stack Local variables ¢
Address
Space free space
\J
Heap ! free space
Address
Space
' Heap
* Local (stack) memory, automatic iaiidbed baia
= Allocated on function call, and deallocated et saic e s
. .) variables Initialized Data
automatically when function exits Segment (.data)
Code Segment (.text)

* Dynamic (heap) memory

= The heap is an area of memory available to allocate areas
("blocks™) of memory for the program.

= Not deallocated when function exits)

What we need

17

How to allocate in heap then?

Stack vs. heap

* Local (stack) memory, automatic

= Allocated on function call, and deallocated automatically when
function exits

* Dynamic heap memory

= The heap is an area of memory available to allocate areas ("blocks")
of memory for the program.

= Not deallocated when function exits. ‘i What we need!

= Request a heap memory:
o malloc() / calloc() / realloc() in C

Stack

Space free space

Heap free space

Heap

Uninitialized Data
Segment (.bss)

Initialized Data
Segment (.data)

18
Code Segment (.text)

Stack vs. heap

» Local (stack) memory, automatic

= Allocated on function call, and deallocated automatically when
function exits

* Dynamic heap memory

= The heap is an area of memory available to allocate areas ("blocks")
of memory for the program.

= Not deallocated when function exits. »i What we need!

» Request a heap memory:

Stack

o malloc() / calloc() / realloc() in C

o new in C++ and Java

Space free space
v

« Student s = new Student();

s
Heap free space
Address

Space
) Heap

Uninitialized Data
Segment (.bss)

Initialized Data

19 Segment (.data)

Code Segment (.text)

Stack vs. heap

* Local (stack) memory, automatic

= Allocated on function call, and deallocated automatically when
function exits

* Dynamic heap memory

= The heap is an area of memory available to allocate areas ("blocks")
of memory for the program.

= Not deallocated when function exits. ‘i What we need!

= Request a heap memory:

Stack

o malloc() / calloc() / realloc() in C

o new in C++ and Java

Space free space

» Student s = new Student();

Heap free space

Heap

= Deallocate from heap memory:

Uninitialized Data
Segment (.bss)

Initialized Data

20 Segment (.data)

Code Segment (.text)

Stack vs. heap

21

Local (stack) memory, automatic

= Allocated on function call, and deallocated automatically when

function exits

Dynamic heap memory

= The heap is an area of memory available to allocate areas ("blocks")

of memory for the program.

= Not deallocated when function exits. »i What we need!

» Request a heap memory:
o malloc() / calloc() / realloc() in C Stack
o new in C++ and Java ooy
« Student s = new Student();

Heap
Address
Space

= Deallocate from heap memory:
o free() in C,
o delete in C++

o garbage collection in Java

4

4

Stack

free space

free space

Heap

Uninitialized Data
Segment (.bss)

Initialized Data
Segment (.data)

Code Segment (.text)

21

Correct implementation

#include <stdio.h>

vold setArr (int);

int main(int argc, char *argv[])

i

setArr{l);

return 8;

¥

/* set arr[index], which is a pointer,
to point to an integer of value 188 */
vold setArr (int index){

int * arr[18]; // global, array of 18 int pointers

printf{"arr [%d] = %dwn", 1, *arr[1l]); // 100

22

Correct implementation

#include <stdio.h>
void setArr (int);
int * arr[l®]; // global, array of 18 int pointers

int main(int argc, char *argv[])

i
setArr{l);
printf{"arr [%d] = %dwn", 1, *arr[1]); // 100
return @;

}

/* set arr[index], which is a pointer,
to point to an integer of value 188 =*/
void setéArr (int index){

arr[index] = (int *) malloc(sizeof (int)); // malloc(4)

*arr[index]

or 3 int i=100; * (arr[index])=i;

23

#include <stdio.h>
int * arr[1@]; // array of 18 int pointers, global variable

int main(int argc, char *argv[])

{
int i
int a=8, b=188, c=288,d=388,c=488;
arr[@] = &a;
arr[l] = &b;
arr[2] = &c;
arr[3] = &d;
arr[4] = &e;
Ffor(i=8; i<5;i++)
printf{"arr[%d] -*-» %d\n", i, *arr[i]); /* ©, 188, 200, 388, 488 */
return 8;
}

This program works.
a,b,c,d,e are local variables, in stack, but not deallocated before

program terminates YO RK I 0

uNL
24 UN

24

12

+ Pointers (Ch5)

= Basics: Declaration and assignment (5.1)

» Pointer to Pointer (5.6)

= Pointer and functions (pass pointer by value) (5.2)

= Pointer arithmetic +- ++ -- (5.4)

= Pointers and arrays (5.3)
o Stored consecutively
o Pointer to array elements p +i=&ali] *(p+i) = a]i]
o Array name contains address of 15t element a = &a[0]
o Pointer arithmetic on array (extension) pl-p2 pl<>!=p2
o Array as function argument — “decay”
o Pass sub_array

= Array of pointers (5.6-5.9)

= Command line arguments (5.10)

= Memory allocation (extra)

» Structures (Ch6)

= Pointer to structures (6.4) today YORK
= Self-referential structures (extra) MRt
25
EECS2031 — Software Tools
C - Structures, Unions, Enums & Typedef (K+R Ch.6)
JORK
26

13

Structures

A collection of one or more variables grouped under a
single name for easy manipulation

The variables can be of different types
* Primitive data types, arrays, pointers and other structure

Encapsulate data int x; float speed;

int y; int directionX;

int directionY;

Only contains data (no functions).

YORK[I

NIVERSITE

27 UNIVERSITY

Structures

» Basics: Declaration and assignment
 Structures and functions

 Pointer to structures

* Arrays of structures

 Self-referential structures (e.g., linked list, binary trees)

uuuuuuuuuu
28 UNIVERSITY

Structures

{
float width;

float height;

} chair;

{
float width;

float height
} is the type // like int a;
chair is variable name.

{
float width;

£loat height; YORK I

table;

Structure Names

+ Give a name (tag) to a struct, so we can reuse it:

shape {
float width;
float height;

};

shape is a valid type
shape chair, chair2; /* like int i, j */
shape table;

shape table; x YQRKu

30

15

Structures
access members,

» use the “.” operator to access members of a struct

chair.width = 10;

table.height = chair.width + 2;

Operator Type Operat, Associativity
Primary Expression orn . > left-to-right
Operators
* - -~ -
Unary Operators (t;‘ll)e:ast) !siz;;f right-to-left
* 1% arithmetic
+- arithmetic
>> << bitwise
<><=>= relational
Rinarv Oneratarg == relational left ta right
31
Structures o
initialization
shape {
float width;
float height;
y:
shape chair = {2,4}; // approach 1
width height
shape chair;
chair.width = 2; approach 2
chair.height = 4;
myshape { Size of struct not necessarily the
int data; sum of its elements. Use sizeof()
float arr[3];
b:
32

16

Structures)
operations (. = &)

» use the “.” operator to access members of a struct
chair.width = 10;
table.height = chair.width + 2;

« can also use assignment with struct variables (same type)
chair2 = chair; /* valid. copy members value */
/* Different from Java! */ »

» can take address as well

. Recall: Array cannot assign
&chair

x arr2 = arrl
YORK LI

33 No == 1= > K SRt

Structures]
operations (. = &)

shape chair = {2,4};

width height

shape chair2 = chair; // copy members values only

// different from Java

chair2.width = chair.width
chair2.height = chair.height

4

printf ("%$d %d", chair.width, chair.height);
printf ("%$d %d4d", chair2.width, chair2.height);

2 4

chair2.width = 20, // does not affect chair

2 20

printf ("%d %d", chair.width, chair2.width) ;
34 ? What if an element is a pointer ?

17

Precedence

Operator Type Opera
Primary Expression on .- associativity
Operators Left to right
* R . " "
Unary Operators & + -t o scanf ("%£",
(typecast) sizeof gchair2.width)
*1 % arithmetic 3 .
.- arithmetic & (chair2.width)
>> << bitwise
<><=>= relational s2.arr[2] =3
Bi o . == relational e
inary Operators Y bitwise
A bitwise No () needed
| bitwise
&& logical
[logical
Ternary Operator % (* ptr) .width
=+4=-=*= = %= = = &=
Assignment Operators ~ |__ V= >>= <<= & later
Comma ,
point {
int x;
int y; }; y
1 pt2
rect {
point ptl;
point pt2; pti
} -z
rect screen;
screen.ptl.x = 1;
screen. pt2 X = 8; Associativity

(screen.pt2) .y

36

7; left to right

_—

Structures vs. Arrays (so far)

» Both are aggregate (non-scalar) types in C -- type of data that can
be referenced as a single entity, and yet consists of more than
one piece of data.

* Both cannot be compared using ==!=> < x

* Array: elements are of same type
Structure: elements can be of different type

* Array: element accessed by [index/position] arr[1] = 3;
Structure: element accessed by .name chair.width = 4
* Array: cannot assign as a whole arr2 = arrl x

Structure: can assign/copy as a whole chair2 = chairl
Diff from Java

* Array: size is the sum of size of elements
Structure: size not necessarily the sum of size of elements
¥ use sizeof

» Basics: Declaration and assignment
 Structures and functions

 Pointer to structures

* Arrays of structures

 Self-referential structures (e.g., linked list, binary trees)

uuuuuuuuuu
38 UNIVERSITY

16

Structure and functions
-- Structures as arguments

* You can pass structures as arguments to functions
main () {

shape s = {1,3};
float £ = get_area(s);

}

float get_area(shape d) | // shape as argument

{ call-by-value
return d.width * d.height; d = s // copy members

} d.width = s.width

d.height = s.height

* This ig call-by-value {- a copy of the struct is made
= disacopy of the actual parameter (copy member values)

= No starting address, no “decay” l YORK '
39 S REP AT AT
39
Structure and functions
--Structures as arguments
* You can pass structures as arguments to functions
main () {
shape s = {1,2};
do_sth(s) /* s is not modified */
}
void do_sth(shape d) call-by-value
{ d = s //copy members
d.width += 100; d.width = s.width
d.height += 200; d.height = s.height
}
* This is|call-by-value |- a copy of the struct is made
40 = Function cannot change the passed struct
40

2C

structure and functions

-- structures as Return Values

» structs can be used as return values for functions as well
shape make dim(int width, int height)

shape d; // in stack
d.width = width;
d.height = height;
return d;

}

main () {
shape myShape = make_dim(3,4);

// myShape = d;
41 Copy members, d is gone (deallocated) afterwards

Structures

» Basics: Declaration and assignment
 Structures and functions

 Pointer to structures

* Arrays of structures

 Self-referential structures (e.g., linked list, binary trees)

UNIVERSITE
42 UNIVERSITY

43

44

structure and functions

-- Structure Pointers

« call-by-value is inefficient for large structures: not decayed
= use pointers (explicitly) !!!

 This also allows to change the passing struct =)

main () {
shape s = {1,3};
shape * ptrS = &s; // pointer to struct shape
float £ = get_area(ptrS); // float £ = get _area(&s);
}

Expect a pointer to
*
float get_area(shape *p) % struct shape }
{
s
return 2 ; PtrS\\:*
) . | width
4}3 Assess member via P ” | height
pointer

structure and functions

-- Structure Pointers

« call-by-value is inefficient for large structures: not decayed
= use pointers (explicitly) !!!

+ This also allows to change the passing struct s

main () {
shape s = {1,3};
shape * ptrS = &s; // pointer to struct shape
float £ = get_area(ptrS); // float £ = get_area(&s);
}

float get_area(shape *p)<<£ E”§$§2$$2”0 }
{ S
return (*p).width * (*p) .height; PtrS\\i‘

" width
4}4 Assess member via P ” | height
pointer

22

structure and functions

-- Structure Pointers

« call-by-value is inefficient for large structures: not decayed
= use pointers!!!

» This also allows to change the passing struct

s
do sth(&s); l * | width
_ P—|heignt
void do_sth(shape * p)
{

(*p) .width += 100;

I i ified |
(*p) .height += 200; Pointee s is modified !

* This is call-by-value --- but address YORKRI

NIVERSITE
45

* Function can change the passed struct

Uperator lype Uperator
. Primary Expression
structure and functions operators oll 2>
-=- Structure Pointers Unary Operators » (t;‘; e:as;)
void do_sth(shape *p) {
(*p) .width += 100; S
* width
} P — | height

* Beware when accessing members a structure via its pointer

* p.width --- incorrect
e Operator . takes higher precedence over operator *
(*p) .width --- correct

e Accessing member of a structure via its pointer is so
common that it has its own operator

p -> width YORKHI

uuuuuuuuuu
46 UNIVERSITY

23

structure and functions

-- Structure Pointers

:%— Equivalent

(*p) .width
p -> width

main () {

shape s

{1,3};

shape * ptrS = &s;

do_sth (ptrS); // or do_sth (&s);

}

void do_sth(
{

P —> width +=
P —> height +=

47

shape *p)

100;
200;

ptrs s

~

P—

width
height

Precedence and Associativity p53

Assignment Operators

Operator Type Operator ,
Primary Expression
Operatzl)rs P o .-
*
Unary Operators (tf]l)e:as;) !s;z;;f -
*1 % arithmetic
+- arithmetic
>> << bitwise
<><=>= relational
Binary Operators =k relational
& bitwise
A bitwise
| bitwise
&& logical
1 logical
Ternary Operator ?:
*, —

=g4=-= = [= Y= >>= <<= &

Comma

X -> data = 2;

X -> data += 2;

() never needed!

Sl |
“

e

24

structure and functions s

-- Structure Pointers % | width

height

void do_sth(shape *p) {
p -> width += 100; // (*p).width += 100;
p -> height += 200; // (*p) .height+= 200;

works with structures, accessing members
-> works with structure pointers, accessing members
struct shape{
int width; int height;

} s, *p;
s.width; valid s -> width; invalid
p.width; invalid p -> width; vald
49 :
49
Pointers to Structures: Shorthand
e (*pp) .x canbe writtenas pp -> x
point {
struct rect r, *rp = &r; int x;
r.ptl.x = 1; int y; };
(*rp) .ptl.x = 1; access ptl.x rect {
point ptl;
rp -> ptl.x = 1; point pt2;
}
Associativity left
on .- to right
YORKJ I
& + - !~ 4+ -- R R
(typecast) sizeof
50

25

Pointer to structures -- malloc/calloc

300

ptable width:

height:

shape * ptable; // pointer to struct shape

ptable = malloc (sizeof (shape)) ;

// set member value one by one, directly
ptable -> width = 1.0; // (* ptable).width = 1.0

ptable -> height = 5.0; // (* ptable) .height = 5.0

or

ptable =(struct shape *) malloc (sizeof (shape)) ;
_ YORKQI

51 When to use? Few slides later NGRS

Pointer to structures -- malloc/calloc

300

ptable * width:

height:

struct shape s = {1.0, 5.0};
shape * ptable; // pointer to struct shape

ptable = malloc (sizeof (shape)) ;
// set member value by copying s, directly

ptable -> width = s.width; // (* ptable) .width
ptable -> height = s.height; // (* ptable) .height

or
ptable =(struct shape *) malloc (sizeof(shape)) ;

_ YORKI 0
52 When to use? Few slides later g

26

Pointer to structures -- malloc/calloc

300
ptable :i‘_it:;
eight:

struct shape s = {1.0, 5.0};
shape * ptable; // pointer to struct shape

ptable = malloc (sizeof (shape)) ;

// set member value by copying s, directly
* ptable = s;

or
ptable =(struct shape *) malloc (sizeof (shape)) ;

_ YORKQI
53 When to use? Few slides later NGRS

Structures vs. Arrays (so far)

* Both are aggregate (non-scalar) types in C -- type of data that can be
referenced as a single entity, and yet consists of more than one piece
of data.

» Both cannot be compared using ==!=<> x

+ Array: elements are of same type
Structure: elements can be of different type

* Array: element accessed by [index/position] arr[1] = 3;
Structure: element accessed by .name chair.width = 4

* Array: cannot assign as a whole arr2 = arrl
Structure: can assign/copy as a whole chair2 = chairl
Diff from Java
* Array: size is the sum of size of elements

Structure: size not necessarily the sum of size of elements

* Array: decay to pointer when passed to function, can modify
* Structure: need ‘&’ to modify (like scalar types int, char, float etc)

27

Structures

+ Basics: Declaration and assignment

» Structures and functions

* Pointer to structures

Arrays of structures

Self-referential structures (e.g., linked list, binary trees)

YORKHI
55 S REP AT AT
55
Arrays of structures -- declaration
« Structures can be arrayed same as the other variables
shape {
float width;
float height;
}i
shape chairs[5]; // int arr[5]
array of 5 struct
0 1 2 3 4
width width width width width
height ||| height ||| height ||| height ||| height
56

28

Array of structures -- Initialization

shape chairs[] = {
{1.4, 2.0},
{0.3, 1.0},
{2.3, 2.0} };

shape chairs[10]; //chairs[n] is a struc.

chairs[0] .height = 1.4; (K:>* gﬁﬁmwm
(chairs[0]) .width = 2.0;

& o+ - -t -
""" (typecast) sizeof

float x = chairs[3] .height;

shape * chairsA[1l0] ;? what is chairsA

#

57

Array of structures -- Initialization

shape chairs[] = {
{1.4, 2.0},
{0.3, 1.0},
{2.3, 2.0} };

shape chairs[10]; //chairs[n] is a struc.
chairs[0] .height = 1.4; 1 2 3

(chalrS[O]) .width = 2.0; w 1.4 w 0.3 w 2.3 W
...... h 2.0 h 1.0 h 2.0 h

float x = chairs[2] .height;

shape * chairsA[10]; what is chairsA ?
r

chairsA[0] I S

. width .
chairsA[1] _— chairsA[l] = &s;
height

58
chairsA[2]

R E—

29

Structures

» Basics: Declaration and assignment =

e Structures and functions

) — today
e Pointer to structures

» Arrays of structures

+ Self-referential structures (last topic in C)

= Structure + pointer to structure + malloc/calloc Next time

* e.g., linked list, binary trees

YORK[I

NIVERSITE
59 UNIVERSITY

