
1

EECS 2030 Winter 2020: Lab 1
Lassonde School of Engineering, York University

INTRODUCTION TO LAB-1
Students in the same lab section are allowed to work in groups of 2 or 3 students.
The purpose of this lab is to review the following basic Java concepts that should have

been covered in your previous courses:
• style
• using int and double values and variables
• arithmetic and the methods provided in java.lang.Math
• boolean expressions
• using objects
• if statements
• using Strings
• using Lists
• for loops

This lab also introduces code testing using JUnit. This lab will be graded for style and
correctness.

STYLE RULES FOR CODING

The style rules are not overly restrictive in EECS2030.
1) Your programs should use the normal Java conventions (class names begin with an up-

percase letter, variable names begin with a lowercase letter, public static final constants
should be in all caps, etc.).

2) In general, use short but descriptive variable names. There are exceptions to this rule;
for example, traditional loop variables are often called i, j, k, etc. Avoid very long
names; they are hard to read, take up too much screen space, and are easy to mistype.

3) Use a consistent indentation size. Beware of the TAB vs SPACE problem: Tabs have
no fixed size; one editor might interpret a tab to be 4 spaces and another might use 8
spaces. If you mix tabs and spaces, you will have indenting errors when your code is
viewed in different editors.

4) Use a consistent and aligned brace style.
5) Insert a space around operators (except the period ”.”)
6) Avoid using ”magic numbers”. A magic number is a number that appears in a program

in place of a named constant.
7) A good IDE (integrated development environment) such as eclipse will correct many

style errors for you. In eclipse, you can select the code that you want to format, right



2

click to bring up a context menu, and choose Source→ Format to automatically format
your code.

GETTING STARTED

Download the provided project package EECS2030 LAB1W20 student.zip and import
it into Eclipse. If you do this lab in prism lab, you can import directly from directory
/eecs/dept/www/course/2030/labs/lab1.

Once the project has been imported, you can see a folder doc under the project, which
contains the provided API. You can view the API by clicking file index.html and viewing
it inside Eclipse, or, go to the project directory and open in your Browser.

LAB EXCERCISES

1) Exercise 1: Complete the methods in the Vector2.java. Run the JUnit test cases in
Vector2Test.java after you complete each method to check your work. Read the API
for more details.

2) Exercise 2: Complete the methods in the Point2.java. Run the JUnit test cases in
PointTester.java after you complete each method to check your work. Read the API
for more details.

3) Exercise 3: In package lab1package2, create a public class Rectangle.java with
integer variables height and width. Write down the default and the custom constructor.
Then write down the getters methods for the height, width, and area of the rectangle.
Then, write down the setters for the height and width. Finally, write a toString()
method to print the height, width, and area of the rectangle. Consult the test cases
provided in API and RectTester.java to figure out the correct names of the getter and
setter methods.

4) Exercise 4: In package lab1package, create a public class Circle.java with variables
radius and color. Write down the default constructor for radius 1.0 and color ”blue”
of the circle. Write down the custom constructor that initializes the circle to the given
radius and given color. An exception IllegalArgumentException is thrown if the radius
is less than 0.0. Consult the test cases provided in Circletest to figure out the correct
names of the getter and setter methods.

5) Exercise 5: In package lab1package, create a public class student which models
a student having courses and grades. The student class has two variables name and
address. The courses taken and grades for the courses are kept in 2 parallel arrays.
The maximum number of courses taken by student is 30.
• Create a constructor public Student(String name, String address). You can also

initialize number of courses and the grades array.



3

• Create the public getters and setters public String getName(), public String getAd-
dress(), public void setAddress(String address). No setter for name as it is not
designed to be changed.

• Print the name and address of student
• Write a method to add a course and grade for the student public void addCourseG-

rade(String course, int grade)
• Print all courses taken and their grades by writing a method public void print-

Grades()
• Write a method to compute the average grade for the student public double getAver-

ageGrade()
• Check out the class tester to verify your methods.
The console output will look like this.
Jim(1 Happy Ave)
Jim(8 maple, vaughan)
Jim
8 maple, vaughan
Jim IM101:89 IM102:57 IM103:96
The average grade is 80.67

6) Exercise 6: In package lab1package3, create classes Attraction.java and Tourism-
Book.java.
• For the Attraction class, we have two variables name and price. Create a defalult

constructor and custom constructor for the Attraction class. Write down the getters
and setters for the name and price variables. Finally, write a method to print the
attraction name and the price.

• For the TourismBook class, we have an array of attractions and a variable to
store the number of attractions. Write down the defalult constructor. Write down
a getter method getAttractions() for the attractions. Write down two different meth-
ods addAttraction(Attraction c) and addAttraction(String n, double p) to add
attractions. Write down a method nameBestAttraction() which selects the attraction
having minimum price.

Read the provided API and the two testers (Tester2.java and tester.java) for hints on
how the constructors and methods work, and use the two different testers classes to
verify your classes.

SUBMIT INSTRUCTIONS FOR STUDENTS NOT WORKING IN A GROUP

Submit your solutions using the submit command. Refer to lab0 (manual) webpage for
instructions. Submit one file at a time.

Remember that you first need to find your workspace directory, then you need to find
your project directory. In your project directory, your files will be located under dif-



4

ferent package directories. For example, your Vector2.java should be in the directory
EECS2030 LAB1W20 student/src/lab1package2.

Once you are in the directory, issue submit 2030 lab1 Vector2.java
Repeat the above steps for each of the other program files.
At any time and in any directory, you can view the files that you have submitted by

issuing submit -l 2030 lab1

Once your file reaches the submit directory, it will be pre-processed. First we check if
the file name is correct. If it is not, then you will see warning message “ERROR We
expected the files: .... java but you submitted the ....”. If the file name is correct, it will
be compiled, and if passed the compilation it will be tested (using the test cases similar to
those provided to you). If the file does not compile or does not pass all the test cases, you
will see relevant error messages. In both cases, the file is accepted but you are expected
to fix the problem and submit again. (You can always submit a file again, and the later
versions will overwrite the old ones.) If your file passed all the test cases, you will see
message “Your submission passed the unit tests.”

SUBMIT INSTRUCTIONS FOR STUDENTS WORKING IN A GROUP

If you are working in a group, in addition to submitting program files as shown above,
you also need to submit a text file containing EECS login names of your group members.

Create a plain text file named group.txt. You can do this in eclipse using the menu File
→ New → File, or, use any other text editors. Type your login names into the file with
each login name on its own line. For example, if the students with EECS login names rey,
finn, and dameronp, worked in a group the contents of group.txt would be:

rey
finn
dameronp

Submit your group information using submit command. In the directory where the text
file is saved, issue submit 2030 lab1 group.txt

SUBMIT INSTRUCTIONS FOR STUDENTS OUTSIDE PRISM LAB

It is possible to submit work from outside the Prism lab, but the process is not trivial;
do not attempt to do so at the last minute if the process is new to you. The process for
submitting from outside of the Prism lab involves the following steps:
1) transfer the files from your computer to the undergraduate EECS server red.eecs.yorku.ca
2) remotely log in to your EECS account
3) submit your newly transferred files in your remote login session using the instructions

for submitting from within the lab
4) repeat Steps 1 and 3 as required

Windows users will likely need to install additional software first. Mac users have all of
the required software as part of MacOS.


