
DOUBLE-ENDED QUEUES (6.3)
EECS 2011

1 31 January 2020

2

Double-Ended Queue ADT
• Deque (pronounced “deck”)
• Allows insertion and deletion at both the front and the rear

of the queue
• Deque ADT: operations
 addFirst(e): insert e at the beginning of the deque
 addLast(e): insert e at the end of the deque
 removeFirst(): remove and return the first element
 removeLast(): remove and return the last element
 first(): return the first element
 last(): return the last element
 isEmpty(): return true if deque is empty; false otherwise
 size(): return the number of objects in the deque

3

Implementation Choices

• Arrays
• Similar to queue implementation
•  Incrementing an index circularly: f = (f + 1) % N
• Decrementing an index circularly:
•  f = (f - 1) % N è problem?
• Solution: f = (f – 1 + N) % N

•  Linked lists: singly or doubly linked?
• Removing at the tail of a single linked list costs θ(n)

4

removeLast() and addLast()

5

Implementing Stacks and Queues with
Deques

6

EXTENDABLE ARRAYS (7.2.3)
EECS 2011

Extendable Array in Java
•  java.util.ArrayList and java.util.Vector use extendable

arrays.
•  capacityIncrement determines how the array grows:
 capacityIncrement = 0: array size doubles
 capacityIncrement = c > 0: array adds c new cells

• Vector object = new vector(int initialcapacity,
capacityIncrement)
Vector vec = new Vector(4, 6);
•  initial capacity = 4
•  to insert 5th element, increase vector capacity to 10.

7

8

Extendable Array Implementation

 When add() is called and an overflow occurs (n = N):
• Allocate a new array T of capacity 2N
• Copy contents of the original array V into the first half of

the new array T
• Set V = T
• Perform the insertion using new array V

• Note: when the number of elements in the list goes below
a threshold (e.g., N/4), shrink the array by half the current
size N of the array.

9

Time Analysis
•  “add”: inserting an element to be the last element of a list

(or top of a stack)
•  add(e) {
 if (full stack) then extend the array;
 “push” e to new array;
 }

• Proposition 1:
 Let S be a list implemented by means of an extendable
array V as described before. The total time to perform a
series of n “add” operations in S, starting from S being
empty and V having size N = 1, is O(n).

Pseudo-code
int [] V = new int[1]; N = 1; top = –1;
input element e;
for(i = 0; i < n; i++) {
 if(stack is full) {
 allocate a new array T of capacity 2N;
 copy V[i] to T[i] for i = 0, 1, …, N–1; // a for loop
 set V = T;
 N = N * 2;
 }
 top = top + 1;
 V[top] = e;
 input next element e;
}

10

11

Time Analysis (2)
1. All array extensions: O(?)
• Allocate a new array T of capacity 2N
• Copy V[i] to T[i] for i = 0, 1, …, N–1
• Set V = T
2. All “push” operations take O(n) (each “push” takes O(1))

Running time of all array extensions:
•  If the array is extended k times, then n = 2k

• The total number of copies is:
 1 + 2 + 4 + 8 + … + 2k–1 = 2k – 1 = n – 1 = O(n)

Total = O(n)+ O(n) = O(n)

12

Increment Strategies
•  java.util.ArrayList and java.util.Vector use extendable

arrays.
•  capacityIncrement determines how the array grows:
 capacityIncrement = 0: array size doubles
 capacityIncrement = c > 0: array adds c new cells

• Proposition 2:
 If we create an initially empty java.util.Vector object with a
fixed positive capacityIncrement value, then performing a
series of n “add” operations on this vector takes Ω(n2)
time.

• Ω(n2): takes at least time n2

13

Increment Strategies (2)
1. Array extensions: O(?)
•  Let a be the initial size of array V
•  Let capacityIncrement = c
•  If the array is extended k times then n = a + ck
• The total number of copies is:
 (a) + (a+c) + (a+2c) + … + (a+(k–1)c) =
 ak + c(1+2+…+(k–1)) = ak + ck(k–1)/2 = θ(k2) = θ(n2)

• We infer Ω(n2) from θ(n2)
2. All “push” operations take O(n) (each “push” takes O(1))

Which is the better increment strategy?

Next lecture ...
• Trees (chapter 8)

14

