
1

QUEUES (6.2)
EECS 2011

22 January 2020

2

Queues: FIFO
•  Insertions and removals follow the Fist-In First-Out rule:
 – Insertions: at the rear of the queue
 – Removals: at the front of the queue

• Applications, examples:
 – Waiting lists
 – Access to shared resources (e.g., printer)
 – Multiprogramming (UNIX)

3

Queue ADT
• Data stored: arbitrary objects
• Operations:
 – enqueue(object): inserts an element at the end of the

 queue
 – object dequeue(): removes and returns the element at

 the front of the queue
 – object first(): returns the element at the front

 without removing it
• Execution of dequeue() or first() on an empty queue
 → throws EmptyQueueException

• Another useful operation:
 – boolean isEmpty(): returns true if the queue is empty;

 false otherwise.

4

Queue Operations
•  enqueue(object)
•  object dequeue()
•  object first()
• boolean isEmpty()
•  int size(): returns the

number of elements in the
queue

• Any others? Depending on
implementation and/or
applications

public interface Queue {
public int size();
public boolean isEmpty();
public Object first()
 throws

EmptyQueueException;
public Object dequeue()
 throws
 EmptyQueueException;

public void enqueue (Object
obj);

}

Queues 5

Queue Example
Operation Output Q
enqueue(5) – (5)
enqueue(3) – (5, 3)
dequeue() 5 (3)
enqueue(7) – (3, 7)
dequeue() 3 (7)
first() 7 (7)
dequeue() 7 ()
dequeue() “error” ()
isEmpty() true ()
enqueue(9) – (9)
enqueue(7) – (9, 7)
size() 2 (9, 7)
enqueue(3) – (9, 7, 3)
enqueue(5) – (9, 7, 3, 5)
dequeue() 9 (7, 3, 5)

Array-based Implementation
• An array Q of maximum size N
• We need to decide where the front and rear are.
• How to enqueue, dequeue?
• Running time of enqueue?
• Running time of dequeue?

6

Enqueue and Dequeue

7

Queues 8

Array-based Queue
• Use an array of size N in a circular fashion
•  Two variables keep track of the front and size

f index of the front element
sz number of stored elements

• When the queue has fewer than N elements, array
location r = (f + sz) mod N is the first empty slot past
the rear of the queue

Q
0 1 2 r f

normal configuration

Q
0 1 2 f r

wrapped-around configuration

Queues 9

Queue Operations

• We use the
modulo operator
(remainder of
division)

Algorithm size()
 return sz

Algorithm isEmpty()
 return (sz == 0)

Q
0 1 2 r f

Q
0 1 2 f r

Queues 10

Queue Operations: enqueue
Algorithm enqueue(e)
 if size() = N - 1 then
 throw IllegalStateException
 else

 r ← (f + sz) mod N
 Q[r] ← e
 sz ← (sz + 1)

• Operation enqueue
throws an exception if
the array is full

•  This exception is
implementation-
dependent

Q
0 1 2 r f

Q
0 1 2 f r

Queues 11

Queue Operations: dequeue
• Note that operation
dequeue returns null if
the queue is empty

Algorithm dequeue()
 if isEmpty() then
 return null
 else
 e ← Q[f]
 f ← (f + 1) mod N
 sz ← (sz - 1)
 return e

Q
0 1 2 r f

Q
0 1 2 f r

12

Analysis of Circular Array Implementation

Performance
• Each operation runs in O(1) time

Limitation
• The maximum size N of the queue is fixed
• How to determine N?
• Alternatives?

•  Extendable arrays
•  Linked lists (singly or doubly linked?)

13

Singly or Doubly Linked?
• Singly linked list

public static class Node
 {
 private Object data;
 private Node next;

 }

•  Needs less space.
•  Simpler code in some cases.
•  Insertion at tail takes O(n).

• Doubly linked list

public static class DNode
 {
 private Object data;
 private Node prev;
 private Node next;

 }

•  Uses more space; more code
•  Better running time in many

cases; all O(1) except
searching.

14

Implementing a Queue with a Singly Linked
List

• Head of the list = front of the queue (enqueue)
• Tail of the list = rear of the queue (dequeue)
•  Is this efficient?

15

dequeue(): Removing at the Head

Running time = ?

16

enqueue(): Inserting at the Tail

Running time = ?

17

Method enqueue() in Java
public void enqueue(Object obj) {
 Node node = new Node();
 node.setElement(obj);
 node.setNext(null); // node will be new tail node
 if (size == 0)
 head = node; // special case of a previously empty queue
 else
 tail.setNext(node); // add node at the tail of the list
 tail = node; // update the reference to the tail node
 size++;

}

18

Method dequeue() in Java
public Object dequeue() throws QueueEmptyException {
 Object obj;
 if (size == 0)
 throw new QueueEmptyException("Queue is empty.");
 obj = head.getElement();
 head = head.getNext();
 size––;
 if (size == 0)
 tail = null; // the queue is now empty
 return obj;

}

19

Analysis of Implementation with Singly-Linked
Lists
• Each methods runs in O(1) time
• Note: Removing at the tail of a singly-linked list requires
θ(n) time. Avoid this!

Comparison with array-based implementation:
• No upper bound on the size of the queue (subject to

memory availability)
• More space used per element (next pointer)
•  Implementation is more complicated (pointer

manipulations)
• Method calls consume time (setNext, getNext, etc.)

Homework
• Study Code Fragment 6.10 (array-based
implementation)

• Study Code Fragment 6.11 (implementing a
queue using the SinglyLinkedList ADT)

21

Next time …
• Double-ended Queues (DEQues) (6.3)
• Extendable Arrays (7.2.3)

