
1/17/2016

1

QUICK SORT
EECS 2011

17 January 2016 1

Quick Sort
• Fastest known sorting algorithm in practice
• Average case: O(N log N)
• Worst case: O(N2)

• But the worst case can be made exponentially unlikely.
• Another divide-and-conquer recursive algorithm,
like merge sort.

2

1/17/2016

2

Quick Sort: Main Idea
1. If the number of elements in S is 0 or 1, then

return (base case).
2. Pick any element v in S (called the pivot).
3. Partition the elements in S except v into two

disjoint groups:
1. S1 = {x S – {v} | x v}
2. S2 = {x S – {v} | x v}

4. Return {QuickSort(S1) + v + QuickSort(S2)}

3

Quick Sort: Example
4

1/17/2016

3

Example of Quick Sort...
5

Issues To Consider
• How to pick the pivot?

• Many methods (discussed later)
• How to partition?

• Several methods exist.
• The one we consider is known to give good results and to

be easy and efficient.
• We discuss the partition strategy first.

6

1/17/2016

4

Partitioning Strategy
• For now, assume that pivot = A[(left+right)/2].
• We want to partition array A[left .. right].
• First, get the pivot element out of the way by swapping

it with the last element (swap pivot and A[right]).
• Let i start at the first element and j start at the next-to-

last element (i = left, j = right – 1)

7

pivot i j

5 7 4 6 3 12 19 5 7 4 63 1219
swap

Partitioning Strategy
• Want to have

• A[k] pivot, for k < i
• A[k] pivot, for k > j

• When i < j
• Move i right, skipping over elements smaller than the pivot
• Move j left, skipping over elements greater than the pivot
• When both i and j have stopped

• A[i] pivot
• A[j] pivot A[i] and A[j] should now be swapped

8

i j

5 7 4 63 1219

i j

5 7 4 63 1219

i j

 pivot pivot

1/17/2016

5

Partitioning Strategy (2)
• When i and j have stopped and i is to the left of j (thus legal)

• Swap A[i] and A[j]
• The large element is pushed to the right and the small element is pushed to the left

• After swapping
• A[i] pivot
• A[j] pivot

• Repeat the process until i and j cross

9

swap

i j

5 7 4 63 1219

i j

5 3 4 67 1219

Partitioning Strategy (3)
• When i and j have crossed

• swap A[i] and pivot
• Result:

• A[k] pivot, for k < i
• A[k] pivot, for k > i

10

i j

5 3 4 67 1219

ij

5 3 4 67 1219

ij

5 3 4 6 7 12 19
swap A[i] and pivot

Break!

1/17/2016

6

Picking the Pivot
• There are several ways to pick a pivot.

• Objective: Choose a pivot so that we will get 2 partitions
of (almost) equal size.

Picking the Pivot (2)
• Use the first element as pivot

• if the input is random, ok.
• if the input is presorted (or in reverse order)

• all the elements go into S2 (or S1).
• this happens consistently throughout the recursive calls.
• results in O(N2) behavior (we analyze this case later).

• Choose the pivot randomly
• generally safe,
• but random number generation can be expensive and

does not reduce the running time of the algorithm.

12

1/17/2016

7

Picking the Pivot (3)
• Use the median of the array (ideal pivot)

• The N/2 th largest element
• Partitioning always cuts the array into roughly half
• An optimal quick sort (O(N log N))
• However, hard to find the exact median

• Median-of-three partitioning
• eliminates the bad case for sorted input.
• reduces the number of comparisons by 14%.

13

Median of Three Method
• Compare just three elements: the leftmost, rightmost and center

• Swap these elements if necessary so that
• A[left] = Smallest
• A[right] = Largest
• A[center] = Median of three

• Pick A[center] as the pivot.
• Swap A[center] and A[right – 1] so that the pivot is at the second last position (why?)

14

1/17/2016

8

Median of Three: Example
15

pivot

5 6 4

6

3 12 192 13 6

5 6 4 3 12 192 6 13

A[left] = 2, A[center] = 13,
A[right] = 6
Swap A[center] and A[right]

5 6 4 3 12 192 13

pivot

65 6 4 3 12192 13

Choose A[center] as pivot

Swap pivot and A[right – 1]

We only need to partition A[left + 1, …, right – 2]. Why?

Quick Sort Summary
• Recursive case: QuickSort(a, left, right)

pivot = median3(a, left, right);
Partition a[left … right] into a[left … i-1], i, a[i+1 … right];
QuickSort(a, left, i-1);
QuickSort(a, i+1, right);

• Base case: when do we stop the recursion?
• In theory, when left >= right.
• In practice, …

1/17/2016

9

Small Arrays
• For very small arrays, quick sort does not perform
as well as insertion sort

• Do not use quick sort recursively for small arrays
• Use a sorting algorithm that is efficient for small arrays,

such as insertion sort.
• When using quick sort recursively, switch to
insertion sort when the sub-arrays have between
5 to 20 elements (10 is usually good).
• saves about 15% in the running time.
• avoids taking the median of three when the sub-array has

only 1 or 2 elements.

17

Quick Sort: Pseudo-code
18

For small arrays
Recursion

Choose pivot

Partitioning

1/17/2016

10

Partitioning Part
• The partitioning code we just

saw works only if pivot is picked
as median-of-three.
• A[left] pivot and A[right] pivot
• Need to partition only

A[left + 1, …, right – 2]

• j will not run past the beginning
• because A[left] pivot

• i will not run past the end
• because A[right-1] = pivot

19

Homework
• Assume the pivot is chosen as the middle
element of an array: pivot = a[(left+right)/2].

• Rewrite the partitioning code and the whole quick
sort algorithm.

1/17/2016

11

Quick Sort Faster Than Merge Sort
• Both quick sort and merge sort take O(N log N) in the

average case.
• But quick sort is faster in the average case:

• The inner loop consists of an increment/decrement (by 1,
which is fast), a test and a jump.

• There is no extra juggling as in merge sort.

21

inner loop

22

Analysis
Assumptions:
• A random pivot (no median-of-three partitioning)
• No cutoff for small arrays (to make it simple)
1. If the number of elements in S is 0 or 1, then return (base case).
2. Pick an element v in S (called the pivot).
3. Partition the elements in S except v into two disjoint groups:

1. S1 = {x S – {v} | x v}
2. S2 = {x S – {v} | x v}

4. Return {QuickSort(S1) + v + QuickSort(S2)}

1/17/2016

12

Analysis (2)
• Running time

• pivot selection: constant time, i.e. O(1)
• partitioning: linear time, i.e. O(N)
• running time of the two recursive calls

• T(N)= T(i) + T(N – i – 1) + cN
• i: number of elements in S1
• c is a constant

23

Worst-Case Scenario
• What will be the worst case?

• The pivot is the smallest element, all the time
• Partition is always unbalanced

24

1/17/2016

13

Best-Case Scenario
• What will be the best case?

• Partition is perfectly balanced.
• Pivot is always in the middle (median of the array).

• T(N) = T(N/2) + T(N/2) + cN = 2T(N/2) + cN
• This recurrence is similar to the merge sort recurrence.
• The result is O(NlogN).

25

Average-Case Analysis
• Assume that each of the sizes for S1 is equally
likely has probability 1/N.

• This assumption is valid for the pivoting and
partitioning strategy just discussed (but may not
be for some others),

• On average, the running time is O(N log N).
• Proof: pp 272–273, Data Structures and
Algorithm Analysis by M. A. Weiss, 2nd edition

26

1/17/2016

14

Next lectures …
• Arrays (review)

• Reading assignment (not graded): section 3.1
• Linked lists (chapter 3)
• Stacks, queues (chapter 6)

27

