
MERGE SORT (12.1)
EECS 2011

21 January 2020 1

Goals
• Divide-and-conquer approach
• Recursion
• Solving recurrences
• One more sorting algorithm

2

Merging Two Sorted Arrays
•  Input: two sorted array A and B
• Output: an output sorted array C
•  Three counters: Actr, Bctr, and Cctr

•  initially set to the beginning of their respective arrays

•  The smaller of A[Actr] and B[Bctr] is copied to the next entry
in C, and the appropriate counters are advanced

•  When either input list is exhausted, the remainder of the
other list is copied to C.

3

Merge Two Sorted Arrays: Example

4

Example: Merge (2)

5

Merge: Java Code
/**
 * Internal method that merges two sorted halves

of a subarray.
 * @param a an array of Comparable items.
 * @param tmpArray an array to place the merged

result.
 * @param leftPos the left-most index of the

subarray.
 * @param rightPos the index of the start of the

second half.
 * @param rightEnd the right-most index of the

subarray.
 */
 private static <AnyType extends

 Comparable<? super AnyType>>
 void merge(AnyType [] a, AnyType [] tmpArray,

int leftPos, int rightPos, int rightEnd)
 {
 int leftEnd = rightPos - 1;
 int tmpPos = leftPos;
 int numElements = rightEnd - leftPos + 1;

 // Main loop

 while(leftPos <= leftEnd && rightPos <=
rightEnd)

 if(a[leftPos].compareTo(a[rightPos]) <= 0)
 tmpArray[tmpPos++] = a[leftPos++];
 else
 tmpArray[tmpPos++] = a[rightPos++];

 while(leftPos <= leftEnd) // Copy rest of 1st half
 tmpArray[tmpPos++] = a[leftPos++];

 while(rightPos <= rightEnd)

 // Copy rest of right half
 tmpArray[tmpPos++] = a[rightPos++];

 // Copy tmpArray back
 for(int i = 0; i < numElements; i++, rightEnd--)
 a[rightEnd] = tmpArray[rightEnd];
 }

6

Merge: Analysis
• Running time analysis:

• Merge takes O(m1 + m2), where m1 and m2 are
the sizes of the two sub-arrays.

• Space requirement:
• merging two sorted lists requires linear extra
memory (in merge sort)

• additional work to copy to the temporary array
and back (in merge sort)

7

Merge Sort: Main Idea
Based on divide-and-conquer strategy
• Divide the list into two smaller lists of about equal sizes.
• Sort each smaller list recursively.
• Merge the two sorted lists to get one sorted list.

Questions:
• How do we divide the list? How much time needed?
• How do we merge the two sorted lists? How much time

needed?

8

9

Animation: https://www.youtube.com/watch?v=JSceec-wEyw

Merge Sort: Algorithm
• Divide-and-conquer strategy

•  recursively sort the first half and the second half
• merge the two sorted halves together

10

Dividing
•  If the input list is an array A[0..N-1]: dividing takes O(1)

time:
•  Represent a sub-array by two integers left and right.
•  To divide A[left .. right], compute center=(left+right)/2

and obtain A[left .. center] and A[center+1 .. right]

•  If the input list is a linked list, dividing takes Θ(N) time:
•  Scan the linked list, stop at the ⎣N/2⎦th entry and cut the

link.

11

Analysis of Merge Sort
•  Let T(N) denote the worst-case running time of
mergesort to sort N numbers.

• Assume that N is a power of 2.

• Divide step: O(1) time
• Conquer step: 2 x T(N/2) time
• Combine step: O(N) time

• Recurrence equation:

 T(1) = 1
 T(N) = 2T(N/2) + N

12

Solving the Recurrence

13

kNNT

NNT

NNNT

NNT

NNNT

NNTNT

k
k +=

=+=

++=

+=

++=

+=

)
2
(2

3)
8
(8

2)
4

)
8
(2(4

2)
4
(4

)
2

)
4
(2(2

)
2
(2)(

!

Since N=2k, we have k=log2 n

)log(
log

)
2
(2)(

NNO
NNN

kNNTNT k
k

=

+=

+=

Next time ...
• Quick Sort (12.2)

14

