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Recursion 
•  In some problems, it may be natural to define 
the problem in terms of the problem itself. 

• Recursion is useful for problems that can be 
represented by a simpler version of the same 
problem. 

• Example: the factorial function 
  6! = 6 * 5 * 4 * 3 * 2 * 1 
 We could write: 
  6! = 6 * 5! 
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Recursion (cont.) 
• Recursion is one way to decompose a task into 
smaller subtasks. At least one of the subtasks is a 
smaller example of the same task. 

• The smallest example of the same task has a 
non-recursive solution. 

• Example: the factorial function 
n! = n*(n-1)! and 1! = 1 
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Example: Factorial Function 
•  In general, we can express the factorial 
function as follows: 
  n! = n*(n-1)! 
 Is this correct? Well… almost. 
  
• The factorial function is only defined for 
positive integers. So we should be more 
precise: 
  f(n) = 1    if n = 1 
      = n*f(n-1)  if n > 1 
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Factorial Function:  Pseudo-code 

 int recFactorial( int n ){ 
    if( n == 1 ) 
       return 1; 
    else 
      return n * recFactorial( n-1 ); 
 } 
 
recursion means that a function calls itself. 
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Visualizing Recursion 

Recursion trace 
• A box for each 
recursive call 

• An arrow from each 
caller to callee 

• An arrow from each 
callee to caller showing 
return value 

Using Recursion 
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Example recursion trace: 

recursiveFactorial ( 4 ) 

recursiveFactorial ( 3 ) 

recursiveFactorial ( 2 ) 

recursiveFactorial ( 1 ) 

call 

call 

call return  1 

return  2 * 1  =  2 

return  3 * 2  =  6 

return  4 * 6  =  24 final answer call 



Recursive vs. Iterative Solutions 

int fac(int numb) { 
 if (numb == 1) 
    return 1; 
 else 
   return   

 (numb*fac(numb-1)); 
} 

int fac(int numb){ 
  int product = 1; 
  while(numb > 1){ 
    product *= numb; 
    numb--; 
  } 
  return product; 
} 

• For certain problems (such as the factorial function), a 
recursive solution often leads to short and elegant code. 
Compare the recursive solution with the iterative solution: 
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A Word of Caution 
• To trace recursion, function calls operate as a stack – 

the new function is put on top of the caller. 
• We have to pay a price for recursion: 

•  calling a function consumes more time and memory 
than adjusting a loop counter.  

•  high performance applications (graphic action 
games, simulations of nuclear explosions) hardly 
ever use recursion. 

•  In less demanding applications, recursion is an 
attractive alternative for iteration (for the right 
problems!)  
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Function Call Stack: Example 
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Function Call Stack 
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Infinite Loops 
 If we use iteration, we must be careful not to create an 
infinite loop by accident. 

 
 for (int incr=1; incr!=10; incr+=2) 
   ... 
  
 int result = 1; 
 while(result > 0){ 
   ... 
   result++; 
 } 
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Oops! 

Oops! 



Infinite Recursion 
 Similarly, if we use recursion, we must be careful not to 
create an infinite chain of function calls. 
   
  int fac(int numb){ 
     return numb * fac(numb-1); 
  } 
  

    int fac(int numb){ 
     if (numb == 1) 
        return 1; 
     else 
        return numb * fac(numb + 1); 
  } 
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Oops! 
No termination 

condition 

Oops! 



Tips 
 We must always make sure that the recursion 
bottoms out: 

 
• A recursive function must contain at least one 
non-recursive branch (base case). 

• The recursive calls must eventually lead to a non-
recursive branch (base case). 

13 



General Form of Recursion  
• How to write recursively? 

int recur_fn( parameters ){ 
  if ( stopping_condition )   // base case 
  return stopping_value; 
  if ( stopping_condition_2 )  // base case 2 
  return stopping_value_2; 
 return recur_fn( revised_parameters )     
}   
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Example: Sum of an Array 

Algorithm LinearSum(A, n): 
Input:  
  A integer array A and an integer 

n ≥ 1, such that A has at least n 
elements 

Output:  
  Sum of the first n integers in A 
 
if n = 1 then 
  return A[0]; 
else 
  return LinearSum(A, n - 1)  
             + A[n - 1]; 
 

Using Recursion 
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Example recursion trace: 

LinearSum ( A , 5 ) 

LinearSum ( A , 1 ) 

LinearSum ( A , 2 ) 

LinearSum ( A , 3 ) 

LinearSum ( A , 4 ) 
call 

call 

call 

call return  A [ 0 ] =  4 

return  4  +  A [ 1 ] =  4  +  3  =  7 

return  7  +  A [ 2 ] =  7  +  6  =  13 

return  13  +  A [ 3 ] =  13  +  2  =  15 

call return  15  +  A [ 4 ] =  15  +  5  =  20 



Example: Reversing an Array 
Algorithm ReverseArray( A, i,  j ): 
   Input: An array A and nonnegative integer indices i and  j 
   Output: The reversal of the elements in A starting at 

index i and ending at  j 
 
     if i <  j then 
  swap A[i] and A[ j]; 
  ReverseArray( A, i + 1,  j – 1 ); 

     return 
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Defining Arguments for Recursion 
•  In creating recursive methods, it is important to 
define the methods in ways that facilitate 
recursion. 

• This sometimes requires we define additional 
paramaters that are passed to the method. 

• For example, we defined the array reversal 
method as ReverseArray(A, i,  j), not 
ReverseArray(A). 
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Linear Recursion 
• The above 2 examples use linear recursion. 

•  sum of an array 
•  reversing an array 
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Linear Recursion (2) 

• Test for base cases.  
• Begin by testing for a set of base cases (there should 

be at least one).  
• Every possible chain of recursive calls must 

eventually reach a base case, and the handling of 
each base case should not use recursion. 

• Recur once.  
• Perform a single recursive call. (This recursive step 

may involve a test that decides which of several 
possible recursive calls to make, but it should 
ultimately choose to make just one of these calls 
each time we perform this step.) 

• Define each possible recursive call so that it makes 
progress towards a base case. 
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Tail Recursion 
• Tail recursion occurs when a linearly recursive method 

makes its recursive call as its last step. 
• The array reversal method is an example. 
• Such methods can be easily converted to non-

recursive methods (which saves on some resources). 
• Example: reversing an array 

Algorithm IterativeReverseArray(A, i, j ): 
      Input: An array A and nonnegative integer indices i and j 
      Output: The reversal of the elements in A starting at index i 

and ending at j 
     while i <  j do 

 Swap A[i ] and A[ j ] 
 i  = i + 1 
 j  = j - 1 

     return 
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Binary Recursion 
• Binary recursion occurs whenever there are 
two recursive calls for each non-base case. 

• Example: Fibonacci sequence 
f(1) = f(2) = 1 
f(n) = f(n-1) + f(n-2) if n > 2 
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Another Binary Recusive Method 
• Problem: add all the numbers in an integer array A: 

Algorithm BinarySum( A, i, n ): 
      Input: An array A and integers i and n 
      Output: The sum of the n integers in A starting at index i 
     if n = 1 then 

    return A[i ]; 
     return BinarySum( A, i, n/ 2 ) + BinarySum( A, i + n/ 2, n/ 2 ); 

•  Example trace: array A has 8 elements 

23 

3 ,  1 

2 ,  2 

0 ,  4 

2 ,  1 1 ,  1 0 ,  1 

0 ,  8 

0 ,  2 

7 ,  1 

6 ,  2 

4 ,  4 

6 ,  1 5 ,  1 

4 ,  2 

4 ,  1 



Recursion: Checklist 
q  Do I have a base case (base cases)? 

q  could be implicit (e.g., simply exit the function) 

q  Do I have a recursive call (recursive calls)? 
q  Do I “adjust” the argument(s) of the recursive 
call(s) correctly? 

q  Can the recursive call(s) eventually reach the 
base case(s)? 

q  Do I write the first call (e.g., in main()) 
correctly? 
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Multiple Recursion 
• Multiple recursion: makes potentially many recursive calls 

(not just one or two). 

• Not covered in this course. 
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Running Time of Recursive Methods 
• Could be just a hidden “for" or “while” loop. 

•  See “Tail Recursion” slide. 
•  “Unravel” the hidden loop to count the number of iterations. 
•  Example: sum of an array, reversing an array 

•  Logarithmic (next) 
•  Examples: binary search, exponentiation, GCD 

• Solving a recurrence 
•  Example: merge sort (next lecture) 

26 



LOGARITHMS 
EECS 2011 

27 



Logarithmic Running Time 
• An algorithm is O(logN) if it takes constant (O(1)) 
time to cut the problem size by a fraction (e.g., by 
½). 

• An algorithm is O(N) if constant time is required to 
merely reduce the problem by a constant amount 
(e.g., by 1). 
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Example: Binary Search 

• Search for an element in a sorted array 
• Sequential search 
• Binary search 

• Binary search 
• Compare the search element with the middle element of 

the array. 
•  If not equal, then apply binary search to half of the array 

(if not empty) where the search element would be. 
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Binary Search 
int binarySearch (int[] a, int x) 
{ 
/*1*/    int low = 0, high = a.size() - 1; 
/*2*/    while (low <= high) 
         { 
/*3*/      int mid = (low + high) / 2; 
/*4*/      if (a[mid] < x) 
/*5*/   low = mid + 1; 
/*6*/      else if (x < a[mid]) 
/*7*/   high = mid - 1; 
      else 
/*8*/   return mid;  // found 
    } 
/*9*/    return NOT_FOUND 
} 
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Binary Search with Recursion 

// Searches an ordered array of integers using recursion 
int bsearchr(const int data[], // input: array 
             int low,          // input: lower bound 
             int high,         // input: upper bound 
             int value         // input: value to find 
        ) // return index if found, otherwise return –1 
 
{  int middle = (low + high) / 2; 
   if (data[middle] == value) 
      return middle; 
   else if (low >= high) 
      return -1; 
   else if (value < data[middle]) 
      return bsearchr(data, low, middle-1, value); 
   else 
      return bsearchr(data, middle+1, high, value); 
} 
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Exponentiation xn 

long exp(long x, int n) 
{ 
/*1*/    if (n==0) 
/*2*/      return 1; 
/*3*/    if (n==1) 
/*4*/      return x; 
/*5*/    if (isEven(n)) 
/*6*/      return exp(x*x, n/2); 
    else 
/*7*/      return exp(x*x, n/2)*x; 
} 
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Euclid’s Algorithm 
•  Homework: trace the following algorithm.  What is its running 

time? (Hint: see next slide) 
•  Computing the greatest common divisor (GCD) of two integers 

long gcd (long m, long n) // assuming m>=n 
{ 
/*1*/   while (n!=0) 
         { 
/*2*/     long rem = m%n; 
/*3*/     m = n; 
/*4*/     n = rem; 
    } 
/*5*/   return m; 
} 
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Euclid’s Algorithm (2) 
• Theorem: 

•   If M > N, then M mod N < M/2. 

• Max number of iterations:  
•   2logN = O(logN) 

• Average number of iterations:  
•   (12 ln 2 ln N)/π2 + 1.47 



How to get better at writing recursive 
methods? 

• Close the textbook and lecture notes. 

• Recall the algorithms in the lecture notes and 
implement them in Java. 

•  Implement homework problems in Java. 
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Next time … 
• Merge sort (section 12.1) 
• Quick sort (section 12.2) 

• Reading for this lecture: chapter 5 
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Appendix: Saving Register Values during 
Function Calls 
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