RECURSION AND
LOGARITHMS

EECS 2011

Recursion

In some problems, it may be natural to define
the problem in terms of the problem itself.

Recursion is useful for problems that can be

represented by a simpler version of the same
problem.

Example: the factorial function

6! = 6 * 5 *x 4 ¥ 3 * 2 %]
We could write:

6! = 6 * 5!

Recursion (cont.)

- Recursion is one way to decompose a task into
smaller subtasks. At least one of the subtasks is a
smaller example of the same task.

- The smallest example of the same task has a
non-recursive solution.

- Example: the factorial function
n! = n*(n-1)! and 1! =1

Example: Factorial Function

- In general, we can express the factorial
function as follows:
n! = n*(n-1)!
|s this correct? Well... almost.

- The factorial function is only defined for
positive integers. So we should be more

precise:
fln) =1 if n=1

= n*f(n-1) if n>1

s
Factorial Function: Pseudo-code

int recFactorial(int n) {
1f(n ==1)
return 1;
else

return n * recFactorial(n-1);

recursion means that a function calls itself.

o R
Visualizing Recursion

Example recursion trace:

Recursion trace

- A box for each
reCurS|Ve Ca” [recursiveFactorial (4)

\cau

\Ca” return 4*6 = 24 —— final answer

return 3*2 =6

- An arrow from each (rocursvaFacioral 3) \
caller to callee = return 2°1 = 2

- An arrow from each ~ [eewsierecon @ \
callee to caller showing = e

[recursiveFactorial (1)

return value

e
Recursive vs. lterative Solutions

- For certain problems (such as the factorial function), a
recursive solution often leads to short and elegant code.
Compare the recursive solution with the iterative solution:

int fac(int numb) { int fac(int numb) {
if (numb == 1) int product = 1;
return 1; while (numb > 1){
else product *= numb;
return numb--;
(numb* fac (numb-1)) ; }

return product;

A Word of Caution

To trace recursion, function calls operate as a stack —
the new function is put on top of the caller.

We have to pay a price for recursion:

calling a function consumes more time and memory
than adjusting a loop counter.

high performance applications (graphic action
games, simulations of nuclear explosions) hardly
ever use recursion.

In less demanding applications, recursion is an
attractive alternative for iteration (for the right
problems!)

Function Call Stack: Example

int main(void) RAMEND Stack Frame
¢ for main()

- Return Address

foo(argl, arg2, ..., argm); Conflict Registers
} Local Variable n
void foo(argl, arg?2, ..., argm) <
{ int varl, var2, ..., varn; Stack Local variable 1
frame for Parameter m
foo()

J Parameter 1 |

Empty |

.
Function Call Stack

high

catier N
P callee

caller:

save args

call function return
update sp
update fp
jmp ret_addr

caller stack frame

save ret_addr
jmp function

stack grows downward

callee stack frame

-

SP

low
Call stack

Infinite Loops

If we use iteration, we must be careful not to create an
infinite loop by accident.

for (int incr=1l; incr'=10; incr+=2)

int result = 1; Oops!]
while (result > 0) {

result++;

} Oops!]

Infinite Recursion

Similarly, if we use recursion, we must be careful not to
create an infinite chain of function calls.

~N
int fac(int numb) { OOpS!

return numb * fac (numb-1); No termination

condition y

}

int fac(int numb) {
if (numb == 1)
return 1;
else
return numb * fac (numb +_1L£:

} {Oops!]

Tips

We must always make sure that the recursion
bottoms out.

A recursive function must contain at least one
non-recursive branch (base case).

The recursive calls must eventually lead to a non-
recursive branch (base case).

General Form of Recursion

- How to write recursively?

int recur fn(parameters) {
if (stopping condition) // base case
return stopping value;
if (stopping condition 2) // base case 2
return stopping value 2;
return recur fn(revised parameters)

}

R
Example: Sum of an Array

Algorithm LinearSum(A, n): Example recursion trace:

Input:
A integer array A and an integer \call return 15+ Al4] = 15 + 5 = 20
n 21, such that Ahas atleastn (™ Lnearsum a5 \
elements \call return 13 + A[3]=13+2 =15
OUtPUt: [LinearSum (A,4) \
Sum of the first n integers in A \call etun 7 + A[2] = 7 + 6 = 13
[LinearSum (A,3) \
if n =1 then \call return 4 + A[1]=4 +3=7
return A[0]; [lnewrsum (32 \
else \ call return A[0] = 4
return LinearSum(A, n- 1) [Linearsum (A1)

+ Aln - 1;

15

Example: Reversing an Array

Algorithm ReverseArray(A, I, j):
Input: An array A and nonnegative integer indices j and |

Output: The reversal of the elements in A starting at
iIndex / and ending at |

if i < jthen
swap A[/] and A[J];
ReverseArray(A, i+ 1, j—1);
return

Defining Arguments for Recursion

- In creating recursive methods, it is important to
define the methods in ways that facilitate
recursion.

- This sometimes requires we define additional
paramaters that are passed to the method.

- For example, we defined the array reversal
method as ReverseArray(A, i, j), not
ReverseArray(A).

Linear Recursion

- The above 2 examples use linear recursion.
- sum of an array
- reversing an array

Using Recursion 19

Linear Recursion (2)

Test for base cases.

Begin by testing for a set of base cases (there should
be at least one).

Every possible chain of recursive calls must
eventually reach a base case, and the handling of
each base case should not use recursion.

Recur once.

Perform a single recursive call. (This recursive step
may involve a test that decides which of several
possible recursive calls to make, but it should
ultimately choose to make just one of these calls
each time we perform this step.)

Define each possible recursive call so that it makes
progress towards a base case.

Using Recursion 20

Tall Recursion

Tail recursion occurs when a linearly recursive method
makes its recursive call as its last step.

The array reversal method is an example.

Such methods can be easily converted to non-
recursive methods (which saves on some resources).

Example: reversing an array
Algorithm lterativeReverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i
and ending at

while /i < jdo
Swap A[i]and A[/]
i =i+ 1

J=j-1

return

Binary Recursion

- Binary recursion occurs whenever there are
two recursive calls for each non-base case.

- Example: Fibonacci sequence
f(1) =1(2) =1
f(n) =f(n-1) + f(n-2) if n > 2

HUT 3! IS 1T THE WoOo- WE'RE HUT 3!
HUT 5! FIBONACC! CORRECT! HOO! ’j SICK oF HUT O!
HUT 8! SERIES? TOUCHDOWN, A FOOTBALL HUT 2!
HUT 13! _ MARCULS! FAVOR- HUT 3!

\ ING THE HUT 2!/

BRAWNY. HUT 5!

-
Another Binary Recusive Method

- Problem: add all the numbers in an integer array A.
Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i
if n =1 then
return A[/];
return BinarySum(A, i, n/2) + BinarySum(A, i+ n/2, n/2);

- Example trace: array A has 8 elements

0,4 4, 4
0, 2 2, 2 4, 2 6, 2

23

Recursion: Checklist

2 Do | have a base case (base cases)?
2 could be implicit (e.g., simply exit the function)

2 Do | have a recursive call (recursive calls)?

2 Do | "adjust” the argument(s) of the recursive
call(s) correctly?

1 Can the recursive call(s) eventually reach the
base case(s)?

2 Do | write the first call (e.g., inmain ())
correctly?

Multiple Recursion

- Multiple recursion: makes potentially many recursive calls
(not just one or two).

- Not covered in this course.

Running Time of Recursive Methods

- Could be just a hidden “for" or “while” loop.
- See “Tail Recursion” slide.
- “Unravel” the hidden loop to count the number of iterations.
- Example: sum of an array, reversing an array
- Logarithmic (next)
- Examples: binary search, exponentiation, GCD
- Solving a recurrence
- Example: merge sort (next lecture)

LOGARITHMS

EECS 2011

Logarithmic Running Time

- An algorithm is O(logN) if it takes constant (O(1))

time to cut the problem size by a fraction (e.g., by
2).

- An algorithm is O(N) if constant time is required to
merely reduce the problem by a constant amount

(e.g., by 1).

-
Example: Binary Search

- Search for an element in a sorted array
- Sequential search
- Binary search

- Binary search

- Compare the search element with the middle element of
the array.

- If not equal, then apply binary search to half of the array
(if not empty) where the search element would be.

.
Binary Search

int binarySearch (int[] a, int x)
{
/*1*%/ int low = 0, high = a.size() - 1;
/*2*/ while (low <= high)
{

/*3*%/ int mid = (low + high) / 2;
/*4%/ if (a[mid] < x)
/*5%/ low = mid + 1;
/*6*/ else if (x < a[mid])
/*7*%/ high = mid - 1;
else
/*8*/ return mid; // found

}
/*9%/ return NOT FOUND

}

.
Binary Search with Recursion

// Searches an ordered array of integers using recursion
int bsearchr (const int data[], // input: array

int low, // input: lower bound
int high, // input: upper bound
int wvalue // input: value to find

) // return index if found, otherwise return -1

{ int middle = (low + high) / 2;
if (data[middle] == wvalue)
return middle;
else if (low >= high)
return -1;
else if (value < data[middle])
return bsearchr (data, low, middle-1, wvalue);

else
return bsearchr (data, middle+l, high, wvalue);

Exponentiation x”

long exp(long x, int n)

{

/*1%/ if (n==0)

/*2%/ return 1;

/*3%/ if (n==1)

/*4%*/ return x;

/*5%/ if (isEven(n))

/*6%/ return exp(x*x, n/2);

else
[*T7*%/ return exp (x*x, n/2)*x;

}

.
Euclid’ s Algorithm

- Homework: trace the following algorithm. What is its running
time? (Hint. see next slide)

- Computing the greatest common divisor (GCD) of two integers

long gcd (long m, long n) // assuming m>=n

{
/*1*%/ while (n'=0)
{

/*2%/ long rem = m%n;
/*3%*/ m = n;
/*4%*/ n = rem;

}
/*5%/ return m;

}

-
Euclid’ s Algorithm (2)

- Theorem:
- If M >N, then M mod N < M/2.

- Max number of iterations:
- 2logN = O(logN)

- Average number of iterations:
- (121n 2 In N)/=? + 1.47

How to get better at writing recursive
methods?

- Close the textbook and lecture notes.

- Recall the algorithms in the lecture notes and
Implement them in Java.

- Implement homework problems in Java.

Next time ...

- Merge sort (section 12.1)
- Quick sort (section 12.2)

- Reading for this lecture: chapter 5

Appendix: Saving Register Values during
Function Calls

Saving register values Saving all the registers is time consuming. Other solutions exist, such as sav-
ing only those registers currently in use. Either the caller of the function or the
function being called is given the responsibility of saving and restoring any regis-
ters that it needs. Another possibility is to use register windows, in which sections
of memory represent different collections of registers, which can be switched by
changing the address holding their starting location. Hybrid solutions exist in
which certain registers are allocated to the caller and certain ones to the callee
(the function that is called). Any of these solve the basic problem of saving values
in a limited number of registers when functions are called.

We will have the caller assume responsibility of saving the registers it uses
before it calls a function and then restoring those values when the function
finishes. This way the function being called is free to use any registers without
conflicts arising. An alternate strategy would be to have the callee push the regis-
ter values for the registers it will use, This requires an initial pass through the
callee’s code to determine which registers it will use. In general, it is better to give
the callee more responsibility during a function call, because the callee’s code is
only generated once, whereas the caller’s code is generated for each function call.

