
RECURSION AND
LOGARITHMS
EECS 2011

21 January 2020 1

Recursion
•  In some problems, it may be natural to define
the problem in terms of the problem itself.

• Recursion is useful for problems that can be
represented by a simpler version of the same
problem.

• Example: the factorial function
 6! = 6 * 5 * 4 * 3 * 2 * 1
 We could write:
 6! = 6 * 5!

2

Recursion (cont.)
• Recursion is one way to decompose a task into
smaller subtasks. At least one of the subtasks is a
smaller example of the same task.

• The smallest example of the same task has a
non-recursive solution.

• Example: the factorial function
n! = n*(n-1)! and 1! = 1

3

Example: Factorial Function
•  In general, we can express the factorial
function as follows:
 n! = n*(n-1)!
 Is this correct? Well… almost.

• The factorial function is only defined for
positive integers. So we should be more
precise:
 f(n) = 1 if n = 1
 = n*f(n-1) if n > 1

4

Factorial Function: Pseudo-code

 int recFactorial(int n){
 if(n == 1)
 return 1;
 else
 return n * recFactorial(n-1);
 }

recursion means that a function calls itself.

5

Visualizing Recursion

Recursion trace
• A box for each
recursive call

• An arrow from each
caller to callee

• An arrow from each
callee to caller showing
return value

Using Recursion

6

Example recursion trace:

recursiveFactorial (4)

recursiveFactorial (3)

recursiveFactorial (2)

recursiveFactorial (1)

call

call

call return 1

return 2 * 1 = 2

return 3 * 2 = 6

return 4 * 6 = 24 final answer call

Recursive vs. Iterative Solutions

int fac(int numb) {
 if (numb == 1)
 return 1;
 else
 return

 (numb*fac(numb-1));
}

int fac(int numb){
 int product = 1;
 while(numb > 1){
 product *= numb;
 numb--;
 }
 return product;
}

• For certain problems (such as the factorial function), a
recursive solution often leads to short and elegant code.
Compare the recursive solution with the iterative solution:

7

A Word of Caution
• To trace recursion, function calls operate as a stack –

the new function is put on top of the caller.
• We have to pay a price for recursion:

•  calling a function consumes more time and memory
than adjusting a loop counter.

•  high performance applications (graphic action
games, simulations of nuclear explosions) hardly
ever use recursion.

•  In less demanding applications, recursion is an
attractive alternative for iteration (for the right
problems!)

8

Function Call Stack: Example

9

Function Call Stack

10

Infinite Loops
 If we use iteration, we must be careful not to create an
infinite loop by accident.

 for (int incr=1; incr!=10; incr+=2)
 ...

 int result = 1;
 while(result > 0){
 ...
 result++;
 }

11

Oops!

Oops!

Infinite Recursion
 Similarly, if we use recursion, we must be careful not to
create an infinite chain of function calls.

 int fac(int numb){
 return numb * fac(numb-1);
 }

 int fac(int numb){
 if (numb == 1)
 return 1;
 else
 return numb * fac(numb + 1);
 }

12

Oops!
No termination

condition

Oops!

Tips
 We must always make sure that the recursion
bottoms out:

• A recursive function must contain at least one
non-recursive branch (base case).

• The recursive calls must eventually lead to a non-
recursive branch (base case).

13

General Form of Recursion
• How to write recursively?

int recur_fn(parameters){
 if (stopping_condition) // base case
 return stopping_value;
 if (stopping_condition_2) // base case 2
 return stopping_value_2;
 return recur_fn(revised_parameters)
}

14

Example: Sum of an Array

Algorithm LinearSum(A, n):
Input:
 A integer array A and an integer

n ≥ 1, such that A has at least n
elements

Output:
 Sum of the first n integers in A

if n = 1 then
 return A[0];
else
 return LinearSum(A, n - 1)
 + A[n - 1];

Using Recursion

15

Example recursion trace:

LinearSum (A , 5)

LinearSum (A , 1)

LinearSum (A , 2)

LinearSum (A , 3)

LinearSum (A , 4)
call

call

call

call return A [0] = 4

return 4 + A [1] = 4 + 3 = 7

return 7 + A [2] = 7 + 6 = 13

return 13 + A [3] = 13 + 2 = 15

call return 15 + A [4] = 15 + 5 = 20

Example: Reversing an Array
Algorithm ReverseArray(A, i, j):
 Input: An array A and nonnegative integer indices i and j
 Output: The reversal of the elements in A starting at

index i and ending at j

 if i < j then
 swap A[i] and A[j];
 ReverseArray(A, i + 1, j – 1);

 return

Using Recursion 16

Defining Arguments for Recursion
•  In creating recursive methods, it is important to
define the methods in ways that facilitate
recursion.

• This sometimes requires we define additional
paramaters that are passed to the method.

• For example, we defined the array reversal
method as ReverseArray(A, i, j), not
ReverseArray(A).

Using Recursion 17

Linear Recursion
• The above 2 examples use linear recursion.

•  sum of an array
•  reversing an array

18

Linear Recursion (2)

• Test for base cases.
• Begin by testing for a set of base cases (there should

be at least one).
• Every possible chain of recursive calls must

eventually reach a base case, and the handling of
each base case should not use recursion.

• Recur once.
• Perform a single recursive call. (This recursive step

may involve a test that decides which of several
possible recursive calls to make, but it should
ultimately choose to make just one of these calls
each time we perform this step.)

• Define each possible recursive call so that it makes
progress towards a base case.

Using Recursion 19

Tail Recursion
• Tail recursion occurs when a linearly recursive method

makes its recursive call as its last step.
• The array reversal method is an example.
• Such methods can be easily converted to non-

recursive methods (which saves on some resources).
• Example: reversing an array

Algorithm IterativeReverseArray(A, i, j):
 Input: An array A and nonnegative integer indices i and j
 Output: The reversal of the elements in A starting at index i

and ending at j
 while i < j do

 Swap A[i] and A[j]
 i = i + 1
 j = j - 1

 return

Using Recursion 20

Binary Recursion
• Binary recursion occurs whenever there are
two recursive calls for each non-base case.

• Example: Fibonacci sequence
f(1) = f(2) = 1
f(n) = f(n-1) + f(n-2) if n > 2

Using Recursion 21

22

Another Binary Recusive Method
• Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
 Input: An array A and integers i and n
 Output: The sum of the n integers in A starting at index i
 if n = 1 then

 return A[i];
 return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2);

•  Example trace: array A has 8 elements

23

3 , 1

2 , 2

0 , 4

2 , 1 1 , 1 0 , 1

0 , 8

0 , 2

7 , 1

6 , 2

4 , 4

6 , 1 5 , 1

4 , 2

4 , 1

Recursion: Checklist
q  Do I have a base case (base cases)?

q  could be implicit (e.g., simply exit the function)

q  Do I have a recursive call (recursive calls)?
q  Do I “adjust” the argument(s) of the recursive
call(s) correctly?

q  Can the recursive call(s) eventually reach the
base case(s)?

q  Do I write the first call (e.g., in main())
correctly?

24

Multiple Recursion
• Multiple recursion: makes potentially many recursive calls

(not just one or two).

• Not covered in this course.

Using Recursion 25

Running Time of Recursive Methods
• Could be just a hidden “for" or “while” loop.

•  See “Tail Recursion” slide.
•  “Unravel” the hidden loop to count the number of iterations.
•  Example: sum of an array, reversing an array

•  Logarithmic (next)
•  Examples: binary search, exponentiation, GCD

• Solving a recurrence
•  Example: merge sort (next lecture)

26

LOGARITHMS
EECS 2011

27

Logarithmic Running Time
• An algorithm is O(logN) if it takes constant (O(1))
time to cut the problem size by a fraction (e.g., by
½).

• An algorithm is O(N) if constant time is required to
merely reduce the problem by a constant amount
(e.g., by 1).

28

Example: Binary Search

• Search for an element in a sorted array
• Sequential search
• Binary search

• Binary search
• Compare the search element with the middle element of

the array.
•  If not equal, then apply binary search to half of the array

(if not empty) where the search element would be.

29

Binary Search
int binarySearch (int[] a, int x)
{
/*1*/ int low = 0, high = a.size() - 1;
/*2*/ while (low <= high)
 {
/*3*/ int mid = (low + high) / 2;
/*4*/ if (a[mid] < x)
/*5*/ low = mid + 1;
/*6*/ else if (x < a[mid])
/*7*/ high = mid - 1;
 else
/*8*/ return mid; // found
 }
/*9*/ return NOT_FOUND
}

30

Binary Search with Recursion

// Searches an ordered array of integers using recursion
int bsearchr(const int data[], // input: array
 int low, // input: lower bound
 int high, // input: upper bound
 int value // input: value to find
) // return index if found, otherwise return –1

{ int middle = (low + high) / 2;
 if (data[middle] == value)
 return middle;
 else if (low >= high)
 return -1;
 else if (value < data[middle])
 return bsearchr(data, low, middle-1, value);
 else
 return bsearchr(data, middle+1, high, value);
}

31

Exponentiation xn

long exp(long x, int n)
{
/*1*/ if (n==0)
/*2*/ return 1;
/*3*/ if (n==1)
/*4*/ return x;
/*5*/ if (isEven(n))
/*6*/ return exp(x*x, n/2);
 else
/*7*/ return exp(x*x, n/2)*x;
}

32

Euclid’s Algorithm
•  Homework: trace the following algorithm. What is its running

time? (Hint: see next slide)
•  Computing the greatest common divisor (GCD) of two integers

long gcd (long m, long n) // assuming m>=n
{
/*1*/ while (n!=0)
 {
/*2*/ long rem = m%n;
/*3*/ m = n;
/*4*/ n = rem;
 }
/*5*/ return m;
}

33

Euclid’s Algorithm (2)
• Theorem:

•  If M > N, then M mod N < M/2.

• Max number of iterations:
•  2logN = O(logN)

• Average number of iterations:
•  (12 ln 2 ln N)/π2 + 1.47

How to get better at writing recursive
methods?

• Close the textbook and lecture notes.

• Recall the algorithms in the lecture notes and
implement them in Java.

•  Implement homework problems in Java.

35

Next time …
• Merge sort (section 12.1)
• Quick sort (section 12.2)

• Reading for this lecture: chapter 5

36

Appendix: Saving Register Values during
Function Calls

37

