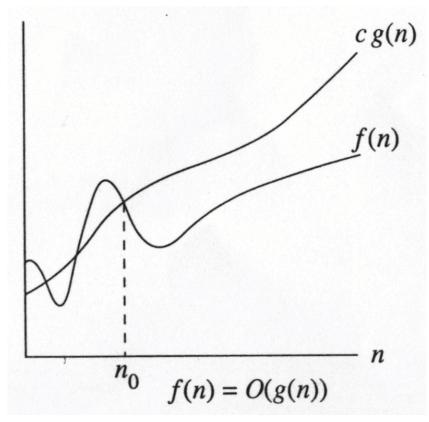
8 January 2020 **1**

ALGORITHM ANALYSIS (PART 2)

EECS 2011

Growth Rate



- The idea is to establish a relative order among functions for large n.
- \exists c, n_0 > 0 such that $f(N) \le c g(N)$ when $N \ge n_0$
- f(N) grows no faster than g(N) for "large" N

Asymptotic Notation: Big-Oh

- f(N) is O(g(N)) if
- There are positive constants c and n_0 such that $f(N) \le c.g(N) \text{ when } N \ge n_0$ where c is a real number.
- The growth rate of f(N) is *less than or equal to* the growth rate of g(N).
- g(N) is an upper bound on f(N).

Big-Oh: Examples

- Let $f(N) = 2N^2$. Then
 - f(N) is O(N⁴)
 - f(N) is O(N³)
 - f(N) is O(N²) (best answer, asymptotically tight)
- O(N²): reads "order N-squared" or "Big-Oh N-squared"

Example

- Show that $7N^2 + 10N + 5NlogN + 3$ is $O(N^2)$.
- Find c and n_0 such that when $N \ge n_0$ $7N^2 + 10N + 5NlogN + 3 \le cN^2$
- $7N^2 + 10N + 5NlogN + 3 \le 7N^2 + 10N^2 + 5N^2 + 3N^2$ ≤ $25N^2$ when $N \ge 1$ So c = 25 and $n_0 = 1$.
- Use the same "technique" for the following problems.

Big Oh: More Examples

- $N^2 / 2 3N$ is $O(N^2)$
- 1 + 4N is O(N)
- $7N^2 + 10N + 3$ is $O(N^2)$, is also $O(N^3)$
- $\log_{10} N = \log_2 N / \log_2 10$ is $O(\log_2 N)$ or $O(\log N)$
- sin N is O(1); 10 is O(1), 10¹⁰ is O(1)

$$\sum_{i=1}^{N} i \le N \cdot N = O(N^2)$$

$$\sum_{i=1}^{N} i^2 \le N \cdot N^2 = O(N^3)$$

- log N + N is O(N)
- log^k N is O(N) for any constant k
- N is $O(2^N)$, but 2^N is not O(N)
- 2^{10N} is not O(2^N)

Math Review: Logarithmic Functions

$$x^{a} = b \quad iff \quad \log_{x} b = a$$

$$\log ab = \log a + \log b$$

$$\log_{a} b = \frac{\log_{m} b}{\log_{m} a}$$

$$\log a^{b} = b \log a$$

$$a^{\log a} = n^{\log a}$$

$$\log^{b} a = (\log a)^{b} \neq \log a^{b}$$

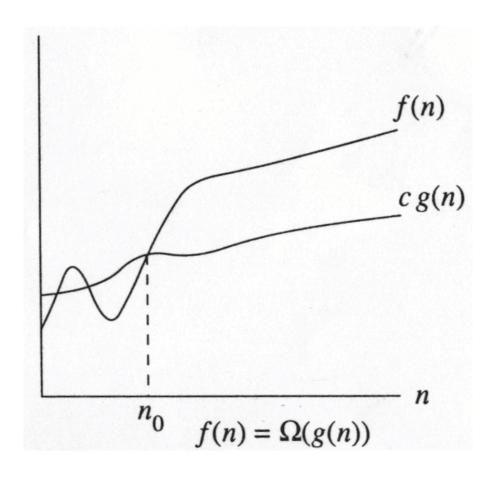
$$\frac{d \log_{e} x}{dx} = \frac{1}{x}$$

Some Rules

When considering the growth rate of a function using O()

- Ignore the lower order terms and the coefficients of the highest-order term
- No need to specify the base of logarithm
 - Changing the base from one constant to another changes the value of the logarithm by only a constant factor
- If $T_1(N)$ is O(f(N)) and $T_2(N)$ is O(g(N)), then
 - T₁(N) + T₂(N) is O(f(N) + g(N))
 (or less formally it is max (O(f(N)), O(g(N)))),
 - $T_1(N) * T_2(N)$ is O(f(N) * g(N))

Big-Omega



- \exists c , $n_0 > 0$ such that $f(N) \ge c g(N)$ when $N \ge n_0$
- f(N) grows no slower than g(N) for "large" N

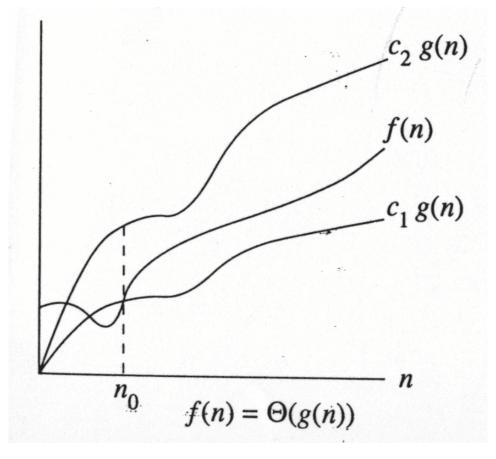
Big-Omega

- f(N) is $\Omega(g(N))$ if
- There are positive constants c and n_0 such that $f(N) \ge c \ g(N) \ when \ N \ge n_0$ where c is a real number.
- The growth rate of f(N) is greater than or equal to the growth rate of g(N).
- g(N) is a lower bound on f(N).

Big-Omega: Examples

```
Let f(N) = 2N<sup>2</sup>. Then
f(N) is Ω(N) (not tight)
f(N) is Ω(N<sup>2</sup>) (best answer)
```

Big-Theta



- The growth rate of f(N) is the same as the growth rate of g(N)
- f(N) is $\Theta(g(N))$ iff f(N) is O(g(N)) and f(N) is $\Omega(g(N))$

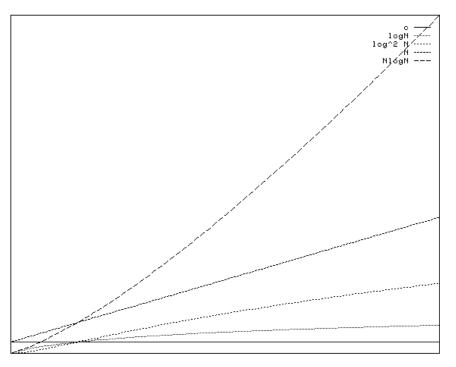
Big-Theta: Example

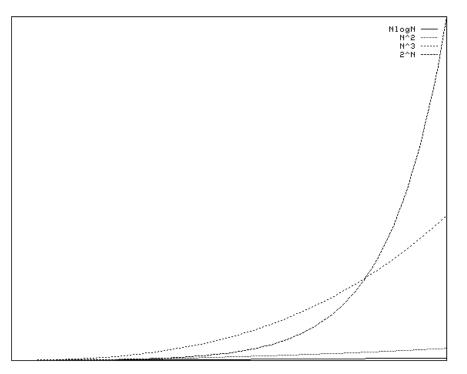
- Let $f(N) = N^2$, $g(N) = 2N^2$
 - Since f(N) is O(g(N)) and f(N) is $\Omega(g(N))$, $f(N) = \Theta(g(N))$.
- $c_1 = 1$, $n_1 = 0$
- $c_2 = \frac{1}{2}$, $n_2 = 0$

Typical Growth Rates

Function	Name
c log N	Constant Logarithmic
$\log^2 N$	Logarithmic Log-squared
N N log N	Linear
N^2	Quadratic
N ³ 2 ^N	Cubic Exponential

Figure 2.1 Typical growth rates

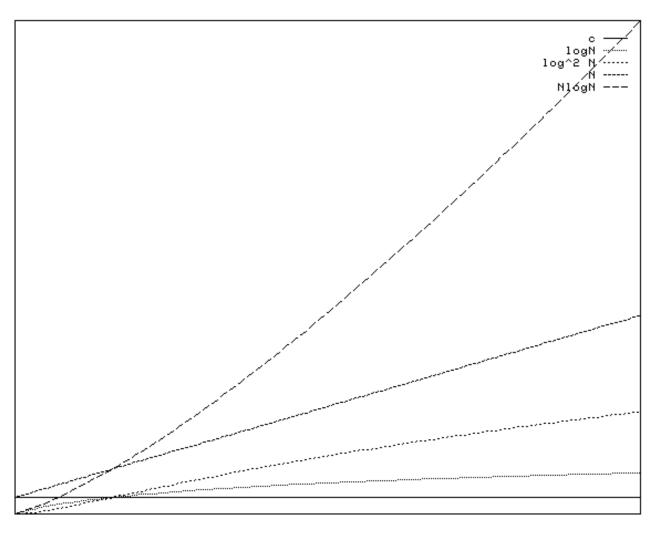




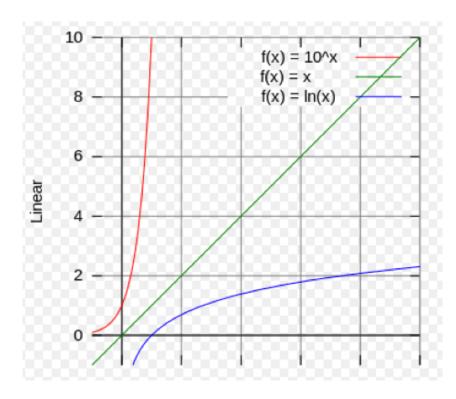
И

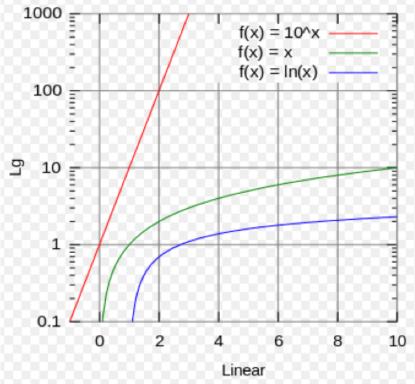
И

Growth Rates: Linear Scale

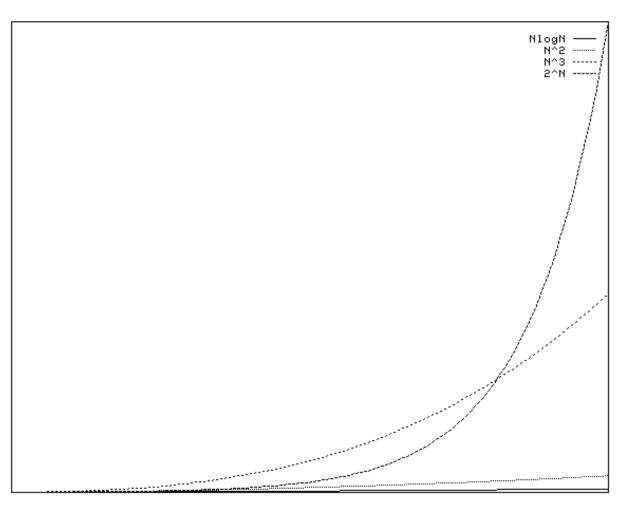


Logarithmic Scale





Growth Rates: Logarithmic Scale



Some More Rules

- If T(N) is a polynomial of degree k, then
 T(N) is Θ(Nk).
- For logarithmic functions, $T(\log_m N)$ is $\Theta(\log N)$.
- log^k N is O(N) for any constant k
 (logarithms grow very slowly)

Small-oh

f(N) is o(g(N)) if

• $\forall \mathbf{c}$, $\exists n_0$ such that f(N) < c g(N) when $N > n_0$

- Less formally, f(N) is o(g(N))
 if f(N) is O(g(N)) and f(N) is not Θ(g(N))
- g(N) grows faster than f(N) for "large" N.

Small-oh: Example

- Let $f(N) = \frac{3}{4} N^2$ and f(N) be o(g(N)).
 - $g(N) = N^2$?
 - $g(N) = N^2 \log N ?$
 - $g(N) = N^3$?

Determining Relative Growth Rates of Two Functions

- 1. Using simple algebra (slide 14) Example: which function grows faster?
 - $f(N) = N \log N$
 - $g(N) = N^{1.5}$
- 2. Using L'Hôpital's rule

Using L' Hôpital's Rule

L' Hôpital's rule

If
$$\lim_{n \to \infty} f(N) = \infty$$
 and $\lim_{n \to \infty} g(N) = \infty$ then $\lim_{n \to \infty} \frac{f(N)}{g(N)}$ $\lim_{n \to \infty} \frac{f'(N)}{g'(N)}$

• Determine the relative growth rates: compute $\lim_{n\to\infty} \frac{f(N)}{g(N)}$

- if 0: f(N) is o(g(N))
- if constant $\neq 0$: f(N) is $\Theta(g(N))$
- if ∞ : g(N) is o(f(N))
- limit oscillates: no relation

Summary of Chapter 4

- Given an algorithm, compute its running time in terms of O, Ω, and Θ (if any).
 - Usually the big-Oh running time is enough.
- Given f(n) = 5n + 10, show that f(n) is O(n).
 - Find c and n₀
- Compare the grow rates of 2 functions.
- Order the grow rates of several functions.
 - Use slide 14.
 - Use L' Hôpital's rule.

Next time

Recursion (Chapter 3)

Reading for this lecture: Chapter 4