ALGORITHM ANALYSIS
(PART 2)

EECS 2011




e
Growth Rate i

f(n)
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- The idea is to establish a relative order among functions
for large n.

-d ¢, ny>0suchthat f(N) <c g(N)when N >n,
- f(N) grows no faster than g(N) for “large” N



Asymptotic Notation: Big-Oh

-f(N) is O(g(N)) if
- There are positive constants ¢ and n, such that
f(N) <c.g(N) when N > n,
where c is a real number.

- The growth rate of f(N) is less than or equal to the
growth rate of g(N).

- g(N) is an upper bound on f(N).
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Big-Oh: Examples

- Let f(N) = 2N2. Then
- f(N) is O(N4)
- f(N) is O(N3)
- f(N) is O(N?) (best answer, asymptotically tight)

- O(N?): reads “order N-squared” or “Big-Oh N-
squared”



Example

- Show that 7N? + 10N + 5NlogN + 3 is O(N?).

- Find ¢ and ny such that when N > n,
/N2 + 10N + 5NlogN + 3 < cN?

- 7N2 + 10N + 5NlogN + 3 < 7N2 + 10N? + 5N2 + 3N?
<25N2 when N > 1
Soc=25and ny=1.

- Use the same “technique” for the following problems.
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Big Oh: More Examples

- N2/2 - 3N is O(N?)
- 1+ 4N is O(N)
- 7N? + 10N + 3 is O(N?), is also O(N3)
- logqg N =1log, N /log, 10 is O(log, N) or O(log N)
- sin Nis O(1); 10is O(1), 10" is O(1)

.ZN i<N-N=0O(N?)

i=1

le <N-N*=0(N?)

- log N+ Nis O(N)

- logX N is O(N) for any constant k
- Nis O(2N), but 2N is not O(N)
- 20N js not O(2N)



Math Review: Logarithmic Functions

x“=b iff log b=a
log ab=1loga+logh
log, b

log b=
log a

loga’ =bloga

logn loga

a = n

log’” a=(oga)’ #loga’
dlog,x 1

dx X



Some Rules

When considering the growth rate of a function using O()

- Ignore the lower order terms and the coefficients of the
highest-order term

- No need to specify the base of logarithm

- Changing the base from one constant to another
changes the value of the logarithm by only a constant
factor

- If T4(N) is O(f(N) and T,(N) is O(g(N)), then
* T1(N) + T(N) is O(f(N) + g(N))
(or less formally it is max (O(f(N)), O(g(N)))),
* T4(N) * To(N) is O(f(N) * g(N))



Big-Omega
f(n)

cg(n)

n

"0 fn) = Q(g(n)

-d ¢, ny>0suchthatf(N) >c g(N) when N >n,
- f(N) grows no slower than g(N) for “large™ N



e
Big-Omega

-f(N) is Q(g(N)) if
- There are positive constants ¢ and n, such that
f(N) > c g(N) when N > n,
where c is a real number.

- The growth rate of f(N) is greater than or equal to
the growth rate of g(N).

- g(N) is a lower bound on f(N).



S
Big-Omega: Examples

- Let f(N) = 2N2. Then
-f(N) is Q(N) (not tight)
-f(N) is Q(N?2)  (best answer)
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Big-Theta

68 (n)
f(n)

¢, 8(n)
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0 fm) = 9(8("1)_)

° T?e)growth rate of f(N) is the same as the growth rate of
ag(N
- f(N) is ®(g(N)) iff f(N) is O(g(N)) and f(N) is Q(g(N))
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Big-Theta: Example

-Let f(N) = N2, g(N) = 2N?
- Since f(N) is O(g(N)) and f(N) is Q(g(N)),
f(N) = ©(g(N)).

‘C1=1,n1=0
‘C2=1/2, n2=0



Typical Growth Rates Fuction | Nare
c Constant

log N Logarithmic
log> N Log-squared
N Linear
N logN
N? Quadratic
N3 Cubic
2N Exponential

Figure 2.1 Typical growth rates
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Growth Rates: Linear Scale
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Logarithmic Scale
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Growth Rates: Logarithmic Scale
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Some More Rules

- If T(N) is a polynomial of degree k, then
T(N) is ©(N¥k).

- For logarithmic functions,
T(log,, N) is ©(log N).

- log¥ N is O(N) for any constant k
(logarithms grow very slowly)



Small-oh

-f(N) is o(g(N)) if
- Yc, dny such that f(N) < c g(N) when N > n,

- Less formally, f(N) is o(g(N))
if f{(N) is O(g(N)) and f(N) is not ®(g(N))

- g(N) grows faster than f(N) for “large™ N.



Small-oh: Example

- Let f(N) = 34 N2 and f(N) be o(g(N)).
+g(N) = N2 2
g(N)=N2?logN ?
-g(N)=N3 ?



Determining Relative Growth Rates of Two
Functions
1. Using simple algebra (slide 14)

Example: which function grows faster?

- f(N) = N logN

- g(N)= N 15

2. Using L’ Hopital’ s rule



.
Using L' HOpital's Rule

- L' Hopital's rule

if  Im f(N)=ognd  Im g(N)=o0
i L) S(Y)

then 1o g( N)= = g'(N)
- Determine the relative growth rates: compute ~ lm J&)
- 110: f(N) is o(9(N))
- if constant = 0: f(N) is ®(g(N))
oo 9(N) is o(f(N))

- limit oscillates: no relation
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Summary of Chapter 4

- Given an algorithm, compute its running time in
terms of O, Q, and O (if any).

- Usually the big-Oh running time is enough.

- Given f(n) = 5n + 10, show that f(n) is O(n).
- Find c and n,

- Compare the grow rates of 2 functions.

- Order the grow rates of several functions.
- Use slide 14.
- Use L’ Hopital s rule.



Next time ...

- Recursion (Chapter 3)

- Reading for this lecture: Chapter 4



