6 January 2020

ALGORITHM ANALYSIS

EECS 2011

1

2

Introduction

- · What is an algorithm?
 - a clearly specified set of simple instructions to be followed to solve a problem
 - · takes a set of values, as input and
 - · produces a value, or set of values, as output
 - · may be specified
 - in English
 - as a computer program (Java, C, C++, etc.)
 - · as a pseudo-code
- Data structures
 - · Methods of organizing data
- Program = algorithms + data structures

Introduction

- · Why need algorithm analysis?
 - · Writing a working program is not good enough.
 - The program may be inefficient!
 - If the program is run on a large data set, then the running time becomes an issue.

3

4

Example: Selection Problem

- Given a list of *N* numbers, determine the k^{th} largest, where $k \le N$.
- Algorithm 1:
 - (1) Read N numbers into an array
 - (2) Sort the array in decreasing order by some simple algorithm
 - (3) Return the element in position k

Example: Selection Problem (2)

- Algorithm 2:
 - (1) Read the first *k* elements into an array and sort them in decreasing order
 - (2) Each remaining element is read one by one
 - If smaller than the kth element, then it is ignored
 - Otherwise, it is placed in its correct spot in the array, bumping one element out of the array.
 - (3) The element in the k^{th} position is returned as the answer.

5

6

Example: Selection Problem (3)

- Which algorithm is better when
 - N = 100 and k = 100?
 - N = 100 and k = 1?
- What happens when N = 1,000,000 and k = 500,000?
- There exist better algorithms than the above two algorithms.

Algorithm Analysis

- We only analyze correct algorithms.
- An algorithm is correct
 - if, for every input instance, it halts with the correct output.
- Incorrect algorithms
 - · might not halt at all on some input instances.
 - might halt with output other than the desired answer.

7

8

Algorithm Analysis (2)

- Analyzing an algorithm
 - \circ Predicting the resources that the algorithm requires.
 - Resources include
 - Memory (space)
 - Computational time (usually most important)
 - Communication bandwidth (in parallel and distributed computing)

Algorithm Analysis (3)

- Factors affecting the running time:
 - computer
 - compiler
 - algorithm used
 - input to the algorithm
 - · The content of the input affects the running time
 - Typically, the input size (number of items in the input) is the main consideration.
 - ${}^{\bullet}$ sorting problem \Rightarrow the number of items to be sorted
 - multiply two matrices together
 ⇒ the total number of elements in the two
 matrices
 - · And sometimes the input order as well (e.g., sorting algorithms).
- · Machine model assumed
 - Instructions are executed one after another, with no concurrent operations

 not parallel computers

9

10

Analysis Model

- It takes exactly one time unit to do any calculation such as
 - \bullet + , -, * , /, %, &, |, &&, ||, etc.
 - comparison
 - assignment
- There is an infinite amount of memory.
- It does not consider the cost associated with page faulting or swapping.
- It does not include I/O costs (which is usually one or more orders of magnitude higher than computation costs).

An Example

```
int sum ( int n ) {
        int partialSum;

1      partialSum = 0;

2      for ( int i = 0; i <= n-1; i++ )

3          partialSum += i*i*i;

4      return partialSum;
}

• Lines 1 and 4: one unit each
• Line 3: 4N
• Line 2: 1+(N+1)+N=2N+2
• Total: 6N+4 ⇒ O(N)</pre>
```

11

12

Running Time Calculations

- Throw away leading constants.
- Throw away low-order terms.
- Compute a Big-Oh running time:
 - · An upper bound for running time
 - Never underestimate the running time of a program
 - The program may end earlier, but never later (worst-case running time)

General Rules for Big-Oh: for loops

- for loops
 - at most the running time of the statements inside the *for* loop (including tests) times the number of iterations.
- Nested for loops

- the running time of the statement multiplied by the product of the sizes of all the *for* loops.
- O(N 2)

13

14

Consecutive Statements

Consecutive statements

for (i=0;ia[i]=0;
for (i=0;ia[i] += a[j]+i+j;

- These just add.
- $O(N) + O(N^2) = O(N^2)$

if - then - else

```
• if C then S1 else S2
```

 never more than the running time of the test plus the larger of the running times of S1 and S2.

```
if (n > 0)
    for ( int i = 0; i < n; i++ )
        sum += i;
else
    System.out.println( "Invalid input" );</pre>
```

15

16

Strategies

- Analyze from the inside out (loops).
- If there are method calls, analyze these first.
- Recursive methods (later):
 - Could be just a hidden "for" loop ⇒ simple.
 - Solve a recurrence ⇒ more complex.

Worst- / Average- / Best-Case

- Worst-case running time of an algorithm:
 - The longest running time for any input of size n
 - An upper bound on the running time for any input
 guarantee that the algorithm will never take longer
 - Example: Sort a set of numbers in increasing order; and the input is in decreasing order
 - · The worst case can occur fairly often
 - Example: searching a database for a particular piece of information
- Best-case running time:
 - sort a set of numbers in increasing order; and the input is already in increasing order
- Average-case running time:
 - May be difficult to define what "average" means

17

18

Example

- Given an array of integers (unsorted), return true if the array contains number 100, and false otherwise.
 - · Best case: ?
 - · Worst case: ?
 - · Average case: ?
- If the array is sorted ...
 - · Best case: ?
 - · Worst case: ?
 - · Average case: ?

Informal Introduction to O, Ω and Θ

 Given an unsorted array of integers, return true if a number k is in the array and false otherwise.

```
for( i = 0; i < N; i++ )
  if ( k == A[i] )
    return ( true );
return ( false );</pre>
```

- Worst-case running time is O(N).
 ⇒The alg has O(N) running time.
- Best-case running time is O(1).
 ⇒ The alg has Ω(1) running time.

 Given an unsorted array of integers, find and return the maximum value stored in the array.

```
max = A[0];
for( i = 1; i < N; i++ )
  if ( max < A[i] )
    max = A[i];
return( max );</pre>
```

- Worst-case running time is O(N).
- Best-case running time is O(N).
- \Rightarrow The alg has $\Theta(N)$ running time.

19

20

Running Time of Algorithms

- Bounds are for algorithms, rather than programs.
 - Programs are just implementations of an algorithm.
 - Almost always the details of the program do not affect the bounds.
- Bounds are for algorithms, rather than problems.
 - A problem can be solved with several algorithms, some are more efficient than others.

Example: Insertion Sort

- 1) Initially p = 1
- 2) Let the first p elements be sorted
- 3) Insert the (p+1)th element properly in the list so that now p+1 elements are sorted.
- 4) Increment p and go to step (3)

21

22

Insertion Sort: Example

Original	34	8	64	51	32	21	Positions Moved
After $p = 1$	8	34	64	51	32	21	1
After $p = 2$	8	34	64	51	32	21	0
After $p = 3$	8	34	51	64	32	21	1
After $p = 4$	8	32	34	51	64	21	3
After $p = 5$	8	21	32	34	51	64	4

Insertion Sort: Algorithm

```
for (int p=1; p < a.size(); p++)
{
    int tmp=a[p];
    for (j=p; j> 0 && tmp < a[j-1]; j--)
        a[j] = a[j-1];
    a[j] = tmp;
}</pre>
```

- For pass p = 1 through N 1, ensures that the elements in positions 0 through p are in sorted order
 - elements in positions 0 through p 1 are already sorted
 - move the element in position p left until its correct place is found among the first p + 1 elements

23

24

Example 2

To sort the following numbers in increasing order:

```
34 8 64 51 32 21
```

```
p = 1; tmp = 8;

34 > tmp, so second element a[1] is set to 34: {8, 34}...

We have reached the front of the list. Thus, 1st position a[0] = tmp=8

After 1st pass: 8 34 64 51 32 21

(first 2 elements are sorted)
```

```
25
P = 2; tmp = 64;
34 < 64, so stop at 3<sup>rd</sup> position and set 3<sup>rd</sup> position = 64
After 2nd pass: 8 34 64 51 32 21
                 (first 3 elements are sorted)
P = 3; tmp = 51;
51 < 64, so we have 8 34 64 64 32 21,
34 < 51, so stop at 2nd position, set 3<sup>rd</sup> position = tmp,
After 3rd pass: 8 34 51 64 32 21
                 (first 4 elements are sorted)
P = 4; tmp = 32,
32 < 64, so 8 34 51 64 64 21,
32 < 51, so 8 34 51 51 64 21,
next 32 < 34, so 8 34 34, 51 64 21,
next 32 > 8, so stop at 1st position and set 2^{nd} position = 32,
After 4th pass: 8 32 34 51 64 21
P = 5; tmp = 21, ...
After 5th pass: 8 21 32 34 51 64
```

Analysis: Worst-case Running Time

- What is the worst input?
- Consider a reversed sorted list as input.
- When a[p] is inserted into the sorted sub-array a[0...p-1], we need to compare a[p] with all elements in a[0...p-1] and move each element one position to the right
 - \Rightarrow i steps.
- Inner loop is executed p times, for each p = 1, 2, , ..., N-1 \Rightarrow Overall: 1 + 2 + 3 + . . . + N-1 = ... = O(N²)

Analysis: Best-case Running Time

- The input is already sorted in the right order.
- When inserting a[p] into the sorted sub-array a[0...p-1], only need to compare a[p] with a[p-1] and there is no data movement
 - \Rightarrow O(1)
- For each iteration of the outer for-loop, the inner for-loop terminates after checking the loop condition once
- \Rightarrow O(N) time
- If input is *nearly sorted*, insertion sort runs fast.

27

28

Insertion Sort: Summary

```
for (int p=1; p < a.size(); p++)
{
    int tmp=a[p];
    for (j=p; j > 0 && tmp < a[j-1]; j--)
        a[j] = a[j-1];
    a[j] = tmp;
}</pre>
```

- O(N2)
- $\Omega(N)$
- Space requirement is O(?)

Next time ...

- Growth rates
- O, Ω, Θ, o
- Reading for this lecture: chapter 4