
3/20/20

1

1

HASH TABLES (PART 2)
EECS 2011

20 March 2020

1

2

Collision Handling
q Separate chaining
q Probing (open addressing): the colliding item is
placed in a different cell of the table
v Linear probing
v Quadratic probing
v Double hashing

2

3/20/20

2

3

Linear Probing
• Linear probing handles

collisions by placing the
colliding item in the next
(circularly) available table
cell

• Each table cell inspected
is referred to as a
“probe”

• Colliding items lump
together; future collisions
will cause a longer
sequence of probes

• Example:
• h(x) = x mod 13
• Insert keys 18, 41, 22, 44,

59, 32, 31, 73, in this order
• Remove 44, 32, 73, 31

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

3

4

Linear Probing Example

1841 2244 59 32

44 32

31

31

73

73

4

3/20/20

3

5

Search with Linear Probing
• Consider a hash table A that

uses linear probing
• get(k)
• We start at cell h(k)
• We probe consecutive

locations until one of the
following occurs
• An item with key k is found,

or
• An empty cell (null) is

found, or
• N cells have been

unsuccessfully probed

Algorithm get(k)
i ¬ h(k)
p ¬ 0
repeat

c ¬ A[i]
if c == Æ

return NULL
else if c.getKey () = k

return c.getValue()
else

i ¬ (i + 1) mod N
p ¬ p + 1

until p = N
return NULL

5

Search Example

• To search for key 31 (31 % 13 = 5), start at index
5 and keep going until seeing 31 at index 10.

• To search for key 5 (5 % 13 = 5), start at index 5
and keep going until seeing an empty bucket, at
index 12 → meaning key is not found.

6

6

3/20/20

4

7

Removal with Probing
• Let’s consider remove(k)

• Call get(k) to get the element.
• Should we set the now empty cell to NULL?
•No. It would mess up the search procedure.
•See example on the next slide.

7

Example with remove(k)

8

remove(59)
get(31)

8

3/20/20

5

Removal with Probing (2)
• A cell has three states:

• null: brand new, never used. get(x) stops when a null
cell is reached.

• in use (not null): currently used.
• DEFUNCT: previously used, now available but unused.

get(x) continues the search when encountering a
DEFUNCT cell.

• Method put(k) should remember a defunct location
encountered during the search for k.
• If no existing entry is found beyond the defunct location,

then put k into the defunct location.

9

9

Hash Tables 10

Remove and Insert with Probing
qTo handle insertions and

deletions, we introduce a
special object, called
DEFUNCT, which
replaces deleted
elements

qremove(k)
nWe search for an entry with

key k
nIf such an entry (k, o) is

found, we replace it with the
special item DEFUNCT and
we return element o

nElse, we return null

qput(k, o)
nWe throw an exception if

the table is full
nWe start at cell h(k)
nWe probe consecutive

cells until one of the
following occurs
w A cell i is found that is either

empty or stores DEFUNCT,
or

w N cells have been
unsuccessfully probed

nWe store (k, o) in cell i

© 2014 Goodrich, Tamassia,
Godlwasser

10

3/20/20

6

11

Collision Handling
q Separate chaining
q Probing (open addressing)

v Linear probing
v Quadratic probing
v Double hashing

11

12

Quadratic Probing
• Linear probing:

Insert item (k, e)
i = h(k)
A[i] is occupied
Try A[(i+1) mod N]: used
Try A[(i+2) mod N]
and so on until
an empty cell is found

• Quadratic probing
A[i] is occupied
Try A[(i+1) mod N]: used
Try A[(i+22) mod N]: used
Try A[(i+32) mod N]
and so on

• May not be able to find an
empty cell if N is not prime,
or the hash table is at least
half full.

• Secondary clustering

12

3/20/20

7

13

Double Hashing
• Double hashing uses a

secondary hash function d(k)
and handles collisions by
placing an item in the first
available cell of the series

(i + j ´ d(k)) mod N
for j = 0, 1, … , N - 1

• The secondary hash function
d(k) cannot have zero values

• The table size N must be a
prime to allow probing of all
the cells

Insert item (k, e)
i = h(k)
A[i] is occupied
Try A[(i+d(k))mod N]: used
Try A[(i+2d(k))mod N]: used
Try A[(i+3d(k))mod N]
and so on until
an empty cell is found

13

14

• Consider a hash table
storing integer keys
that handles collision
with double hashing
• N = 13
• h(k) = k mod 13
• d(k) = 7 - k mod 7

• Insert keys 18, 41, 22,
44, 59, 32, 31, 73, in
this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

14

3/20/20

8

15

Double Hashing (2)
• d(k) should be chosen to minimize clustering
• Common choice of compression map for the secondary

hash function:
d(k) = q - k mod q
where
• q < N
• q is a prime

• The possible values for d(k) are
1, 2, … , q

• Note: linear probing has d(k) = 1.

15

16

Open Addressing: Load Factor
• Define the load factor l = n/N

• n = number of elements in the hash table
• N = hash table size (prime number)

• To obtain best performance, ensure that l < 0.5 for linear
probing, and only a bit higher for other open addressing
schemes.

• As we add more elements to the hash table, l goes up Þ
rehashing (allocate a bigger table, define a new
compression function, and map the elements to the new
array).

16

3/20/20

9

17

Comparing Collision Handling Schemes

• Separate chaining:
– simple implementation
– faster than open
addressing in general
– using more memory

• Open addressing:
– using less memory
– slower than chaining in
general
– more complex removals

• Linear probing: items are
clustered into contiguous
runs called primary
clustering.

• Quadratic probing: items
are clustered into
contiguous runs called
secondary clustering.

• Double hashing:
distributes keys more
uniformly than linear and
quadratic probing.

17

18

Performance of Hashing
• The expected running

time of all the dictionary
ADT operations in a hash
table is O(1).

• The load factor l = n/N
affects the performance
of a hash table.

• In the worst case, searches,
insertions and removals on
a hash table take O(n) time.

• The worst case occurs when
all the keys inserted into the
map collide.

• In practice, hashing is very
fast provided that l < 0.9 for
separate chaining and
l < 0.5 for open addressing.

18

3/20/20

10

19

Summary
• Purpose of hash tables: to

obtain O(1) expected
query time.

• If the keys are not integers
(e.g., strings), convert
them to integer keys.

• Map integer keys to the
hash table entries using a
compression map function.

• If collision occurs, use one
of the collision handling
schemes, taking into
account available memory
space.
• Separate chaining
• Open addressing

• If the load factor l = n/N
approaches the specified
threshold, rehash.

19

Next lecture …
• Graphs: for self-study, not on final exam.

20

20

