
3/20/20

1

1

HASH TABLES (PART 1)
EECS 2011

20 March 2020

1

Hash Tables 2

The Map ADT
qget(k): if the map M has an entry with key k, return its

associated value; else, return null
qput(k, v): insert entry (k, v) into the map M; if key k is not

already in M, then return null; else, return old value
associated with k

qremove(k): if the map M has an entry with key k, remove it
from M and return its associated value; else, return null

qsize(), isEmpty()
qentrySet(): return an iterable collection of the entries in M
qkeySet(): return an iterable collection of the keys in M
qvalues(): return an iterator of the values in M

© 2014 Goodrich, Tamassia,
Godlwasser

2

3/20/20

2

3

Hash Tables
• Balanced BST (e.g., AVL trees): O(logN) for insertion,

deletions and searches.

• Hashing is a technique used for performing insertions,
deletions and searches in constant average time (i.e.,
O(1) expected time)

• A hash table data structure consists of:
• Hash function h
• Array of size N (bucket array)

3

4

Example
• We design a hash table

for a dictionary storing
items (SIN, Name),
where SIN (social
insurance number) is a
ten-digit positive integer

• Our hash table uses an
array of size N = 10,000
and the hash function
h(x) = x mod N

• We use chaining to
handle collisions

Æ

Æ
Æ

Æ

Æ

0
1
2
3
4

9997
9998
9999

…

451-229-0004 981-101-0004

200-751-9998

025-612-0001

4

3/20/20

3

5

Hash Functions and Hash Tables

• A hash function h maps keys
of a given type to integers in
a fixed interval [0, N - 1]

• Example:
h(x) = x mod N

is a hash function for integer
keys

• The integer h(x) is called the
hash value of key x

• The goal of a hash function
is to uniformly disperse keys
in the range [0, N - 1]

• A hash table for a given key type
consists of
• Hash function h
• Array of size N

• A collision occurs when two keys
in the dictionary have the same
hash value.

• Collision handing schemes:
• Chaining: colliding items are

stored in a sequence
• Open addressing: the colliding

item is placed in a different cell of
the table

5

6

Design Issues
• Hash functions

• Converting a key to an index in the hash table

• Collision handling
• Separate chaining
• Probing (open addressing)

• Linear probing
• Quadratic probing
• Double hashing

• Table size (should be a prime number)

6

3/20/20

4

Hash Functions

7

7

Hash Tables 8

Hash Functions

• A hash function is usually
specified as the
composition of two
functions:
Hash code:

h1: keys ® integers
Compression function:

h2: integers ® [0, N - 1]

• The hash code is
applied first, and the
compression function
is applied next on the
result, i.e.,

h(x) = h2(h1(x))
• The goal of the hash
function is to
“disperse” the keys in
an apparently random
way.

© 2014 Goodrich, Tamassia,
Godlwasser

8

3/20/20

5

Hash Codes
• To “transform” an arbitrary key (e.g., words in an English

dictionary) to an integer.
h1: keys ® integers

• Should avoid collisions as much as possible

9

9

Hash Tables 10

Hash Codes
q Treating the bit

representation as an integer
nWe reinterpret the bits of the

key as an integer
nSuitable for keys of length less

than or equal to the number of
bits of the integer type (e.g.,
byte, short, int and float in Java)
nEx: Float.floatToIntBits(x)

qComponent sum:
§ We partition the bits of the

key into components of
fixed length (e.g., 16 or 32
bits) and we sum the
components (ignoring
overflows), or XOR the
components.

§ Suitable for numeric keys of
fixed length greater than or
equal to the number of bits
of the integer type (e.g.,
long and double in Java)

© 2014 Goodrich, Tamassia,
Godlwasser

10

3/20/20

6

11

Hash Codes for Keys That Are Strings
• We need to convert a string to an integer before hashing.
• One option is to add up the ASCII values of the characters

in the string.
• Is this a good strategy?

• Polynomial accumulation:
• We partition the bits of the key into a sequence of components of

fixed length (e.g., 8, 16 or 32 bits).
x0 x1 … xn-1

• We evaluate the polynomial
p(z) = x0 + x1 z + x2 z2 + … + xn-1zn-1

at a fixed value z, ignoring overflows.

11

12

Polynomial Accumulation
• Polynomial p(z) can be evaluated in O(n) time using

Horner’s rule:
• The following polynomials are successively computed, each from

the previous one in O(1) time
p0(z) = xn-1

pi (z) = xn-i-1 + zpi-1(z)
(i = 1, 2, …, n -1)

• We have p(z) = pn-1(z)
• https://www.math10.com/en/algebra/horner.html

• Good z values: 33, 37, 39, 41.
oEspecially suitable for strings
• z = 33 gives at most 6 collisions on a set of 50,000 English

words.

12

3/20/20

7

Hash Functions

13

13

14

Compression Function: Division
• h2 (y) = y mod N
• The size N of the hash

table is usually chosen to
be a prime number to
minimize the number of
collisions.

• Example: inserting {200,
205, 210, 215, 220, . . .
,600} into a bucket array of
size 100: each hash code
collides with three others.

• Bucket array of size 101:
no collision.

• Good compression
function: probability of two
different keys getting
hashed to the same bucket
is 1/N.

14

3/20/20

8

Compression Function: MAD
• Multiply, Add and Divide (MAD):

• h2 (y) = [(ay + b) mod p] mod N
• N: size of the bucket array
• p is a prime number larger than N
• a and b: integers chosen at random interval [0, p−1], with a > 0

• Helps eliminate repeated patterns in a set of integer keys

15

15

16

Collision Handling

• Collisions occur when
different elements are
mapped to the same
cell.

• Separate Chaining: let
each cell in the table
point to a linked list of
entries that map there

• Separate chaining is
simple, but requires
additional memory
outside the table

Æ

Æ
Æ

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

16

3/20/20

9

17

Separate Chaining

• Use chaining to set up lists of items with same index
• The expected search/insertion/removal time is O(n/N), provided that

the indices are uniformly distributed
• N = hash table size
• n = number of elements in the table

• If n/N is O(1), the expected running time is O(1)

17

18

Load Factor – Separate Chaining
• Define the load factor l = n/N

• n = number of elements in the hash table
• N = hash table size (prime number)

• To obtain best performance with separate chaining,
ensure l < 0.9.

• As long as l is O(1), insert, delete and search operations
run in O(1) expected time.

• As we add more elements to the hash table, l goes up Þ
rehashing (allocate a bigger table, define a new
compression function, and put the elements into the new
array).

18

3/20/20

10

19

Next lecture: Collision Handling
q Separate chaining
q Probing (open addressing): the colliding item is
placed in a different cell of the table
v Linear probing
v Quadratic probing
v Double hashing

19

