HEAP SORT (9.4.2)

EECS 2011

Heap Sort

- Consider a priority queue with
n items implemented by
means of a heap

- the space used is O(n)

- methods insert and
deleteMin take O(log n)
time

- methods size, isEmpty,

and findMin take time O(1)
time

- Using a heap-based priority

queue, we can sort a
sequence of n elements in O(n
log n) time

+ The resulting algorithm is

called heap-sort

- Heap-sort is much faster than

quadratic sorting algorithms,
such as insertion-sort and
selection-sort

16-03-03

s]
Sorting Using a Heap

- Input: array A with n elements to be sorted

- Temporary array T of size at least n+1, which will work as
a heap.

- 2 steps:
1.Create a heap T using the elements of A
- Insert each element A[i] into T using T.insert(A[i])

2.Call T.deleteMin() n times to move the elements from T to
A, one by one.

]
Sorting Code

for (i=0;i++;i<n)
T.insert(A[i]);

for (i=0;i++;i<n)
A[i] = T.deleteMin();

16-03-03

16-03-03

Analysis of Heap Sort
- Stirling’ s approximation: n'=n"e" /2.77,71
- Insertions

log1 +log 2 + ... + log n = log(n!) = O(nlogn)

- Deletions
log1 +log 2 + ... +log n = log(n!) = O(nlogn)

- Total = O(nlogn)

IN-PLACE HEAP SORT

]
In-place Heap Sort

- The heap sort algorithm we just discussed
requires a temporary array T (a min heap).

- In-place heap sort uses only one array, the
original array storing the inputs.

- 2 steps:

1. Transform the original array to a max heap using
buildHeap procedure (“heapify”)

2.Call deleteMax() n times to get the array sorted.

Step 1: buildHeap

- Input: a non-heap binary
tree stored in an array

- Output: a heap stored in
the same array

- We can construct a heap
storing n given keys using @
a bottom-up construction
with log n phases

- In phase i, pairs of heaps
with 2i-1 keys are
merged into heaps with 2!
*1-1 keys

16-03-03

buildHeap Example

- See demo with max heaps at
www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingll/heapSort/heapSort.html

www.cs.usfca.edu/~galles/visualization/HeapSort.html

- “Heapify” from height 1 to h (bottom-up
construction)

16-03-03

]
Step 2: Call deleteMax

- The first step is to build a max heap using buildHeap.
- Call deleteMax to remove the max item (the root).
- The heap size is reduced by one.
- The last entry of the heap is now empty.
- Store the item just removed into that location
(copyMax).
- Repeat deleteMax and copyMax until the heap is empty (n
— 1 times).
- Examples: next slides

- Demo/animation
www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingll/heapSort/heapSort.html
www2.hawaii.edu/~copley/665/HSApplet.html

{16 a3 1o

AN =\
S N N
8 D ® K@ g D @ 3) \ﬁ) @ ®
@ @@ SO @ o X)
(a) (b) {<)
9 (®)]
@y 3) € 3 #{u\@
m b @ @ 20 i@ @ 22® @
'...(d, .Q.(_) ...m

O G ®
@ @ @
-

€2 3
v e® ®© ©® e © ®
XYy o0 e® XYY
£

) (h)

®
i @ &
® o6 o
®0®

() (k)

af1f2]3iai721s]910[14]16]

16-03-03

Breakdown of Step (b)

8 i) 8 i) 8
D@ 3 D@ 3 (a) D@
2) Q i 2 i 2 i
@)‘.(m G "w) G qb‘.(m
temp = A[l]; // 14
© A[1] = A[i-1]; // A[1] = 1
5 // Perform down-heap percolation
(@) 7 3 // So 10 now is the new root.
@)@ // 1 is a leaf.

A[i-1] = temp; // 14
i=i-1;

Analysis of buildHeap

- Bottom-up heap construction runs in O(n) time.

- Bottom-up heap construction is faster than n successive
insertions (slide 3), which take O().

=> speeds up the first phase of heap-sort.

16-03-03

]
Analysis of buildHeap (2)

- Theorem: For the complete binary tree of height &
containing n = 21— 1 nodes, the sum of the heights of
all the nodes is 21— 1 — (h +1)

- buildHeap thus runs in O(n) time

&]
Analysis of In-place Heap Sort

- Build a max heap using buildHeap = O()
- Repeat

- deleteMax = O()

- copyMax = 0()

until the heap is empty = n iterations

Total running time = O(n log n)

16-03-03

16-03-03

Review of Heap Sort

Using atemp heap T In-place sorting

for (i=0;i++;i<n) run buildHeap on A;
T.insert(A[i]); repeat

for (i=0; i++;i<n) deleteMax;
A[i] = T.deleteMin(); copyMax;

until the heap is empty;

Note: min heap Note: max heap

Next lecture ...
- Hash Tables (section 10.2)

