
16-03-03

1

3 March 2016 1

HEAP SORT (9.4.2)
EECS 2011

2

Heap Sort

•  Consider a priority queue with
n items implemented by
means of a heap
•  the space used is O(n)
•  methods insert and

deleteMin take O(log n)
time

•  methods size, isEmpty,
and findMin take time O(1)
time

•  Using a heap-based priority
queue, we can sort a
sequence of n elements in O(n
log n) time

•  The resulting algorithm is
called heap-sort

•  Heap-sort is much faster than
quadratic sorting algorithms,
such as insertion-sort and
selection-sort

16-03-03

2

3

Sorting Using a Heap
•  Input: array A with n elements to be sorted

• Temporary array T of size at least n+1, which will work as
a heap.

•  2 steps:
1. Create a heap T using the elements of A

•  Insert each element A[i] into T using T.insert(A[i])
2. Call T.deleteMin() n times to move the elements from T to

A, one by one.

Sorting Code
for (i = 0; i++; i < n)

 T.insert(A[i]);
for (i = 0; i++; i < n)

 A[i] = T.deleteMin();

4

16-03-03

3

5

Analysis of Heap Sort
• Stirling’s approximation:

•  Insertions
 log1 + log 2 + … + log n = log(n!) = O(nlogn)

• Deletions
 log1 + log 2 + … + log n = log(n!) = O(nlogn)

• Total = O(nlogn)

nenn nn π2! −≈

IN-PLACE HEAP SORT

6

16-03-03

4

7

In-place Heap Sort
• The heap sort algorithm we just discussed
requires a temporary array T (a min heap).

•  In-place heap sort uses only one array, the
original array storing the inputs.

• 2 steps:
1. Transform the original array to a max heap using
buildHeap procedure (“heapify”)

2. Call deleteMax() n times to get the array sorted.

8

•  Input: a non-heap binary
tree stored in an array

• Output: a heap stored in
the same array

• We can construct a heap
storing n given keys using
a bottom-up construction
with log n phases

•  In phase i, pairs of heaps
with 2i -1 keys are
merged into heaps with 2i
+1-1 keys

Step 1: buildHeap

2i -1 2i -1

2i+1-1

16-03-03

5

9

10

buildHeap Example
• See demo with max heaps at
www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingII/heapSort/heapSort.html
www.cs.usfca.edu/~galles/visualization/HeapSort.html

• “Heapify” from height 1 to h (bottom-up
construction)

16-03-03

6

11

Step 2: Call deleteMax
• The first step is to build a max heap using buildHeap.
• Call deleteMax to remove the max item (the root).

• The heap size is reduced by one.
• The last entry of the heap is now empty.
• Store the item just removed into that location

(copyMax).
• Repeat deleteMax and copyMax until the heap is empty (n
─ 1 times).

• Examples: next slides
• Demo/animation

www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingII/heapSort/heapSort.html
www2.hawaii.edu/~copley/665/HSApplet.html

12

16-03-03

7

13

14

1

14

10

1

14

10

9

1

Breakdown of Step (b)

temp = A[1]; // 14
A[1] = A[i-1]; // A[1] = 1
// Perform down-heap percolation
// So 10 now is the new root.
// 1 is a leaf.
A[i-1] = temp; // 14
i = i-1;

14

Analysis of buildHeap
• Bottom-up heap construction runs in O(n) time.
• Bottom-up heap construction is faster than n successive

insertions (slide 3), which take O().
 ⇒ speeds up the first phase of heap-sort.

16-03-03

8

15

Analysis of buildHeap (2)
• Theorem: For the complete binary tree of height h

containing n = 2h+1 – 1 nodes, the sum of the heights of
all the nodes is 2h+1 – 1 – (h + 1)

•  buildHeap thus runs in O(n) time

16

Analysis of In-place Heap Sort
• Build a max heap using buildHeap ⇒ O()
• Repeat

• deleteMax ⇒ O()
• copyMax ⇒ O()

 until the heap is empty ⇒ n iterations

Total running time = O(n log n)

16-03-03

9

Review of Heap Sort
Using a temp heap T

for (i = 0; i++; i < n)
 T.insert(A[i]);
for (i = 0; i++; i < n)
 A[i] = T.deleteMin();

Note: min heap

In-place sorting

run buildHeap on A;
repeat
 deleteMax;
 copyMax;
until the heap is empty;

Note: max heap

18

Next lecture …
• Hash Tables (section 10.2)

