
20-03-10

1

10 March 2020 1

HEAPS (9.3)
EECS 2011

Priority
Queues 2

Priority Queue ADT (9.1, 9.2)
•  A priority queue stores a

collection of entries
•  Each entry is a pair

(key, value)
•  Main methods of the Priority

Queue ADT
•  insert(k, v)

inserts an entry with key k and
value v

•  removeMin()
removes and returns the entry
with smallest key, or null if the
the priority queue is empty

•  Additional methods
•  min()

returns, but does not remove,
an entry with smallest key, or
null if the the priority queue is
empty

•  size(), isEmpty()

•  Applications:
•  Standby flyers
•  Auctions
•  Emergency room waiting list
•  Routing priority at routers in a

network

© 2014 Goodrich, Tamassia,
Goldwasser

20-03-10

2

Example
• A sequence of priority queue methods:

© 2014 Goodrich, Tamassia,
Goldwasser 3 Priority

Queues

Priority
Queues 4

Entry ADT

q An entry in a priority queue
is simply a key-value pair

q Priority queues store
entries to allow for efficient
insertion and removal
based on keys

q Methods:
n getKey: returns the key for

this entry
n getValue: returns the value

associated with this entry

q As a Java interface:
/**
 * Interface for a key-value
 * pair entry
 **/
public interface Entry<K,V> {
 K getKey();
 V getValue();
 }

© 2014 Goodrich, Tamassia,
Goldwasser

20-03-10

3

Implementations of PQs
Data structure insert() min() deleteMin()
Unsorted array O() O() O()
Sorted array O() O() O()
Unsorted doubly linked list O() O() O()
Sorted doubly linked list O() O() O()
AVL trees O() O() O()

5

A data structure more efficient for PQs is heaps:
•  insert(), deleteMin(): O(logn)
•  min(): O(1)

6

Complete Binary Trees

• Let h be the height of a binary tree.
•  for i = 0, … , h - 1, there are 2i nodes at depth i.

•  that is, all levels except the last are full.
•  at depth h, the nodes are filled from left to right.

1

2

2h-1

1

keys
0

1

h-1

h

depth

20-03-10

4

7

Complete Binary Trees (2)
• Given a complete binary tree of height h and size n,
 2h ≤ n ≤ 2h+1 – 1

• Which data structure is better for implementing
complete binary trees, arrays or linked structures?

1

2

2h-1

1

keys
0

1

h-1

h

depth

8

Heaps
• A heap is a binary tree

storing keys at its nodes and
satisfying the following
properties:
•  Heap-Order: for every internal

node v other than the root,
key(v) ≥ key(parent(v))

•  Complete Binary Tree: let h
be the height of the heap
•  for i = 0, … , h - 1, there are

2i nodes at depth i.
•  at depth h, the nodes are

filled from left to right.

2

6 5

7 9

•  The last node of a heap is
the rightmost node of depth
h.

•  Where can we find the
smallest key in a min heap?
The largest key?

last node

20-03-10

5

9

Examples that are not heaps

10

Height of a Heap

•  Theorem: A heap storing n keys has height O(log n)
 Proof: (we apply the complete binary tree property)

•  Let h be the height of a heap storing n keys
•  Since there are 2i keys at depth i = 0, … , h - 1 and at least one key at

depth h, we have n ≥ 1 + 2 + 4 + … + 2h-1 + 1

•  Thus, n ≥ 2h , i.e., h ≤ log n

1

2

2h-1

1

keys
0

1

h-1

h

depth

20-03-10

6

11

Max Heap
• The definition we just discussed is for a min heap.
• Analogously, we can declare a max heap if we need to

implement deleteMax operation instead of deleteMin.

12

Heaps and Priority Queues
• We can use a heap to implement a priority queue
• We store a (key, value) item at each internal node
• We keep track of the position of the last node

(2, Sue)

(6, Mark) (5, Pat)

(9, Jeff) (7, Anna)

20-03-10

7

Heaps 13

Array-based Heap Implementation
• We can represent a heap with

n keys by means of an array
of length n

•  The root is at rank 1.
•  For the node at rank i

•  the left child is at rank 2i
•  the right child is at rank 2i + 1

2

6 5

7 9

2 5 6 9 7

1 2 3 4 5

© 2014 Goodrich, Tamassia,
Goldwasser

14

Insertion into a Heap
• Method insert of the

priority queue ADT
corresponds to the
insertion of a key k to the
heap

• The insertion algorithm
consists of three steps
1.  Find the insertion node z

(the new last node)
2.  Store k at z
3.  Restore the heap-order

property (discussed
next)

2

6 5

7 9

insertion node

2

6 5

7 9 1

z

z

20-03-10

8

15

Upheap Percolation (Bubbling)
•  After the insertion of a new key k, the heap-order property

may be violated
•  Algorithm upheap restores the heap-order property by

swapping k along an upward path from the insertion node
•  Upheap terminates when the key k reaches the root or a node

whose parent has a key smaller than or equal to k
•  Since a heap has height O(log n), upheap runs in O(log n) time

2

1 5

7 9 6 z

1

2 5

7 9 6 z

http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html

16

Removal from a Heap (deleteMin)
• Method deleteMin of the

priority queue ADT
corresponds to the
removal of the root key
from the heap

• The removal algorithm
consists of three steps
1.  Replace the root key with

the key of the last node w
2.  Remove w
3.  Restore the heap-order

property (discussed next)

2

6 5

7 9

last node

w

7

6 5

9
w

new last node

20-03-10

9

17

Downheap Percolation
•  After replacing the root key with the key k of the last node, the

heap-order property may be violated
•  Algorithm downheap restores the heap-order property by swapping

key k along a downward path from the root
•  Upheap terminates when key k reaches a leaf or a node whose

children have keys greater than or equal to k
•  Since a heap has height O(log n), downheap runs in O(log n) time

7

6 5

9
w

5

6 7

9
w

18

More Heap Operations
Assume a min heap.
•  decreaseKey(i, k)

•  T[i] = T[i] - k, then percolate up.
•  Example: system admin boosts the priority of his/her jobs.

•  increaseKey(i, k)
•  T[i] = T[i] + k, then percolate down.
•  Example: penalizing misbehaved processes.

•  delete(i)
•  Perform decreaseKey(i, ∞) then deleteMin().

•  ∞ means a very large number, so T[i] = T[i] − ∞ has the highest priority (root)
•  Example: removing a print job from the priority queue.

•  Note: searching for the element at index i takes O(n) time in the worst
case, but we expect not to use the above methods very often.

20-03-10

10

19

Next lecture …
• Heap Sort (9.4.2)

