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Priority Queue ADT (9.1, 9.2) 
•  A priority queue stores a 

collection of entries 
•  Each entry is a pair 

(key, value) 
•  Main methods of the Priority 

Queue ADT 
•  insert(k, v) 

inserts an entry with key k and 
value v 

•  removeMin() 
removes and returns the entry 
with smallest key, or null if the 
the priority queue is empty 

•  Additional methods 
•  min() 

returns, but does not remove, 
an entry with smallest key, or 
null if the the priority queue is 
empty 

•  size(), isEmpty() 

•  Applications: 
•  Standby flyers 
•  Auctions 
•  Emergency room waiting list 
•  Routing priority at routers in a 

network 
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Example 
• A sequence of priority queue methods: 
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Entry ADT 

q An entry in a priority queue 
is simply a key-value pair 

q Priority queues store 
entries to allow for efficient 
insertion and removal 
based on keys 

q Methods: 
n getKey: returns the key for 

this entry 
n getValue: returns the value 

associated with this entry 

q As a Java interface: 
/**  
  * Interface for a key-value 
  * pair entry  
 **/ 
public interface  Entry<K,V>  { 
    K getKey(); 
    V getValue(); 
 } 

© 2014 Goodrich, Tamassia, 
Goldwasser 



20-03-10 

3 

Implementations of PQs 
Data structure insert( ) min( ) deleteMin( ) 
Unsorted array O(      ) O(      ) O(      ) 
Sorted array O(      ) O(      ) O(      ) 
Unsorted doubly linked list O(      ) O(      ) O(      ) 
Sorted doubly linked list O(      ) O(      ) O(      ) 
AVL trees O(      ) O(      ) O(      ) 
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A data structure more efficient for PQs is heaps: 
•  insert( ), deleteMin( ): O( logn ) 
•  min( ): O( 1 ) 
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Complete Binary Trees 

• Let h be the height of a binary tree. 
•  for i = 0, … , h - 1, there are 2i nodes at depth i. 

•  that is, all levels except the last are full. 
•  at depth h, the nodes are filled from left to right. 
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Complete Binary Trees (2) 
• Given a complete binary tree of height h and size n, 
 2h ≤ n ≤ 2h+1  – 1 

• Which data structure is better for implementing 
complete binary trees, arrays or linked structures? 
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Heaps 
• A heap is a binary tree 

storing keys at its nodes and 
satisfying the following 
properties: 
•  Heap-Order: for every internal 

node v other than the root, 
key(v) ≥ key(parent(v)) 

•  Complete Binary Tree: let h 
be the height of the heap 
•  for i = 0, … , h - 1, there are 

2i nodes at depth i. 
•  at depth h, the nodes are 

filled from left to right. 
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•  The last node of a heap is 
the rightmost node of depth 
h. 

•  Where can we find the 
smallest key in a min heap? 
The largest key? 

last node 
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Examples that are not heaps 
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Height of a Heap  

•  Theorem: A heap storing n keys has height O(log n) 
 Proof: (we apply the complete binary tree property) 

•  Let h be the height of a heap storing n keys 
•  Since there are 2i keys at depth i = 0, … , h - 1 and at least one key at 

depth h, we have n ≥ 1 + 2 + 4 + … + 2h-1  + 1  

•  Thus, n ≥ 2h , i.e., h ≤ log n 
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Max Heap 
• The definition we just discussed is for a min heap.   
• Analogously, we can declare a max heap if we need to 

implement deleteMax operation instead of deleteMin. 

12 

Heaps and Priority Queues 
• We can use a heap to implement a priority queue 
• We store a (key, value) item at each internal node 
• We keep track of the position of the last node 

(2, Sue) 

(6, Mark) (5, Pat) 

(9, Jeff) (7, Anna) 
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Array-based Heap Implementation 
• We can represent a heap with 

n keys by means of an array 
of length n  

•  The root is at rank 1. 
•  For the node at rank i 

•  the left child is at rank 2i  
•  the right child is at rank 2i + 1 
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Insertion into a Heap 
• Method insert of the 

priority queue ADT 
corresponds to the 
insertion of a key k to the 
heap 

• The insertion algorithm 
consists of three steps 
1.  Find the insertion node z 

(the new last node) 
2.  Store k at z 
3.  Restore the heap-order 

property (discussed 
next) 
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Upheap Percolation (Bubbling) 
•  After the insertion of a new key k, the heap-order property 

may be violated 
•  Algorithm upheap restores the heap-order property by 

swapping k along an upward path from the insertion node 
•  Upheap terminates when the key k reaches the root or a node 

whose parent has a key smaller than or equal to k  
•  Since a heap has height O(log n), upheap runs in O(log n) time 
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http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html 
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Removal from a Heap (deleteMin) 
• Method deleteMin of the 

priority queue ADT 
corresponds to the 
removal of the root key 
from the heap 

• The removal algorithm 
consists of three steps 
1.  Replace the root key with 

the key of the last node w 
2.  Remove w  
3.  Restore the heap-order 

property (discussed next) 
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Downheap Percolation 
•  After replacing the root key with the key k of the last node, the 

heap-order property may be violated 
•  Algorithm downheap restores the heap-order property by swapping 

key k along a downward path from the root 
•  Upheap terminates when key k reaches a leaf or a node whose 

children have keys greater than or equal to k  
•  Since a heap has height O(log n), downheap runs in O(log n) time 
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More Heap Operations 
Assume a min heap. 
•  decreaseKey(i, k) 

•  T[i] = T[i] - k, then percolate up. 
•  Example: system admin boosts the priority of his/her jobs. 

•  increaseKey(i, k) 
•  T[i] = T[i] + k, then percolate down. 
•  Example: penalizing misbehaved processes. 

•  delete(i) 
•  Perform decreaseKey(i, ∞) then deleteMin(). 

•  ∞ means a very large number, so T[i] = T[i] − ∞ has the highest priority (root) 
•  Example: removing a print job from the priority queue. 

•  Note: searching for the element at index i takes O(n) time in the worst 
case, but we expect not to use the above methods very often. 
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Next lecture … 
• Heap Sort (9.4.2) 


