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AVL Trees 
•  AVL trees are 

balanced. 

•  An AVL Tree is a 
binary search tree 
such that for every 
internal node v of T, 
the heights of the 
children of v can differ 
by at most 1. 
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An example of an AVL tree where the 
heights are shown next to the nodes
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Height of an AVL Tree 
•  Proposition: The height of an AVL tree T storing n 

keys is O(log n). 

Proof:  
•  Find n(h): the minimum number of internal nodes of 

an AVL tree of height h 
•  We see that n(1) = 1 and n(2) = 2 
•  For h ≥ 3, an AVL tree of height h contains the root 

node, one AVL subtree of height h-1 and the other 
AVL subtree of height h-2. 

•  i.e. n(h) = 1 + n(h-1) + n(h-2) 
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Height of an AVL Tree (2) 

•  Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2) 
n(h) > 2n(h-2) 
n(h) > 4n(h-4) 
… 
n(h) > 2in(h-2i) 

•  Solving the base case we get: n(h) ≥ 2 h/2-1 

•  Taking logarithms: h < 2log n(h) +2 

•  Thus the height of an AVL tree is O(log n) 
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Insertion in an AVL Tree 
•  Insertion is as in a binary search tree. 
•  Always done by expanding an external node. 
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Rebalancing 
•  A binary search tree T is called balanced if for every node 

v, the height of v’s children differ by at most 1. 

•  Inserting a node into an AVL tree involves performing 
expandExternal(w, (k, e)) on T, which changes the heights 
of some of the nodes in T. 

•  The insertion may cause the tree to become unbalanced,  

•  We start from the newly created node w and travel up the 
tree until we find the first node z that is unbalanced. 
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Rebalancing (2) 
•  y = child of z with higher 

height  
    Note: y = ancestor of w 
•  x = child of y with higher 

height  
 Note: x = ancestor of w or 
x = w 

•  Since z became 
unbalanced by an 
insertion in the subtree 
rooted at its child y, 
height(y) = 
height(sibling(y)) + 2  
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Restructuring 
•  Now to rebalance... 
 
•  To rebalance the subtree rooted at z, we must 

perform a restructuring. 

•  Two methods: 
1. cut/link restructuring (not in textbook) 

Given 7 integer keys 1, 2, 3, 4, 5, 6, and 7, how do 
we build a balanced BST? 
 

2. tri-node restructuring (textbook) 
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Cut/Link Restructure Algorithm   
•  Any tree that needs to be balanced can be grouped into 7 

parts: x, y, z, and the 4 subtrees anchored at the children 
of those nodes (T0, T1, T2, T3). 

•  Any of the 4 subtrees can be empty (one dummy leaf). 
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Cut/Link Restructure Algorithm (2) 
•  Number the 7 parts by doing an inorder traversal. 
•  x,y, and z are now renamed based upon their order within 

the inorder traversal. 
•  x, y, z: even numbers 
•  T0, T1, T2, T3: odd numbers 
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Cut/Link Restructure Algorithm (3) 
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•  Now we can re-link these subtrees to the main tree. 
•  Link in node 4 (b) where the subtree’s root was.
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Cut/Link Restructure Algorithm (4) 

•  Link in nodes 2 (a) and 6 (c) as children of node 4. 
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Cut/Link Restructure Algorithm (5) 
•  Finally, link in subtrees 1 and 3 as the children of node 2, 

and subtrees 5 and 7 as the children of 6. 
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Tri-node Restructuring 
•  To rebalance the subtree rooted at z, we must perform 

a restructuring. 
•  Let (a, b, c) be an inorder listing of x, y, z. 
•  Perform the rotations needed to make b the topmost 

node of the three (to become parent of a and c). 
•  4 subtrees (formerly children of x, y, z) become children 

of a, b, c so as to maintain BST properties. 
•  Connect b to the rest of the tree (to z’s former parent).   
•  There are 4 cases:  

–  2 cases of single rotations 
–  2 cases of double rotations. 

Single Rotations 
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Double Rotations 
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Restructuring Example 
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Restructure Algorithm 
After an insertion, we start from the newly created node w and travel up 

the tree until we find the first node z that is unbalanced. 
 
Algorithm restructure( x ): 

 Input: A node x of a binary search tree T that has both a parent y 
and a grandparent z 
 Output: Tree T restructured by a rotation involving nodes x, y, and z. 

 
1.  Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let (T1, 

T2, T3, T4) be an inorder listing of the the four subtrees of x, y, and 
z, not rooted at x, y, or z.  

2.  Replace the subtree rooted at z with a new subtree rooted at b 
3.  Let a be the left child of b and let T1 and T2 be the left and right 

subtrees of a, respectively. 
4.  Let c be the right child of b and let T3 and T4 be the left and right 

subtrees of c, respectively. 
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Cut/Link vs. Tri-node Restructuring 

•  Both methods give the same results. 
•  Both methods have the same time complexity. 
•  Time complexity = ? 
•  Cut/link method: 

–  Advantage: no case analysis; more elegant. 
–  Disadvantage: can be more code to write. 
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Removal 
•  Removal begins as in a binary search tree (3 cases).  
•  The tree may become unbalanced. 
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Removal: Rebalancing 
•  Let z be the first 

unbalanced node 
encountered while 
travelling up the tree from 
node w.  

•  y = child of z with higher 
height (y cannot be 
ancestor of w) 

•  x = child of y with higher 
height, or either child if 
two children of y have the 
same height. 
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Removal: Restructuring 
•  Perform operation 

restructure( x ) to restore 
balance at the subtree 
rooted at z. 

•  As this restructuring may 
upset the balance of 
another node higher in 
the tree, we must 
continue checking for 
balance until the root of T 
is reached. 
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Removal Example 
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Removal Example (2) 

Whew, balanced!
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AVL Tree Performance 
•  AVL tree storing n items 

–  The data structure uses O(n) space 

–  A single restructuring takes O(1) time 
•  using a linked-structure binary tree 

–  Searching takes O(log n) time 
•  height of tree is O(log n), no restructures needed 

–  Insertion takes O(log n) time 
•  initial find is O(log n) 
•  restructuring up the tree, maintaining heights is O(log n) 

–  Removal takes O(log n) time 
•  initial find is O(log n) 
•  restructuring up the tree, maintaining heights is O(log n) 
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Next lecture … 

•  Heaps (9.3) 
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