
1

1

AVL Trees (11.2, 11.3)

EECS 2011

25 February 2020

2

AVL Trees
•  AVL trees are

balanced.

•  An AVL Tree is a
binary search tree
such that for every
internal node v of T,
the heights of the
children of v can differ
by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the
heights are shown next to the nodes

2

3

Height of an AVL Tree
•  Proposition: The height of an AVL tree T storing n

keys is O(log n).

Proof:
•  Find n(h): the minimum number of internal nodes of

an AVL tree of height h
•  We see that n(1) = 1 and n(2) = 2
•  For h ≥ 3, an AVL tree of height h contains the root

node, one AVL subtree of height h-1 and the other
AVL subtree of height h-2.

•  i.e. n(h) = 1 + n(h-1) + n(h-2)

4

Height of an AVL Tree (2)

•  Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2)
n(h) > 2n(h-2)
n(h) > 4n(h-4)
…
n(h) > 2in(h-2i)

•  Solving the base case we get: n(h) ≥ 2 h/2-1

•  Taking logarithms: h < 2log n(h) +2

•  Thus the height of an AVL tree is O(log n)

3

5

Insertion in an AVL Tree
•  Insertion is as in a binary search tree.
•  Always done by expanding an external node.

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion after insertion

6

Rebalancing
•  A binary search tree T is called balanced if for every node

v, the height of v’s children differ by at most 1.

•  Inserting a node into an AVL tree involves performing
expandExternal(w, (k, e)) on T, which changes the heights
of some of the nodes in T.

•  The insertion may cause the tree to become unbalanced,

•  We start from the newly created node w and travel up the
tree until we find the first node z that is unbalanced.

4

Rebalancing (2)
•  y = child of z with higher

height
 Note: y = ancestor of w
•  x = child of y with higher

height
 Note: x = ancestor of w or
x = w

•  Since z became
unbalanced by an
insertion in the subtree
rooted at its child y,
height(y) =
height(sibling(y)) + 2

7

Restructuring
•  Now to rebalance...

•  To rebalance the subtree rooted at z, we must

perform a restructuring.

•  Two methods:
1. cut/link restructuring (not in textbook)

Given 7 integer keys 1, 2, 3, 4, 5, 6, and 7, how do
we build a balanced BST?

2. tri-node restructuring (textbook)

8

5

9

Cut/Link Restructure Algorithm
•  Any tree that needs to be balanced can be grouped into 7

parts: x, y, z, and the 4 subtrees anchored at the children
of those nodes (T0, T1, T2, T3).

•  Any of the 4 subtrees can be empty (one dummy leaf).

88

44

17

7850

48

62

54T0

T1

T2

T3

y

x

z

10

Cut/Link Restructure Algorithm (2)
•  Number the 7 parts by doing an inorder traversal.
•  x,y, and z are now renamed based upon their order within

the inorder traversal.
•  x, y, z: even numbers
•  T0, T1, T2, T3: odd numbers

88

44

17

7850

48

62

54T0

T1

T2

T3

z (a)

y (b)

x (c)

1 2

3
4

5
6

7

6

11

Cut/Link Restructure Algorithm (3)

62

b4

•  Now we can re-link these subtrees to the main tree.
•  Link in node 4 (b) where the subtree’s root was.

12

Cut/Link Restructure Algorithm (4)

•  Link in nodes 2 (a) and 6 (c) as children of node 4.

62

b4

44 78

a c2 6

7

13

Cut/Link Restructure Algorithm (5)
•  Finally, link in subtrees 1 and 3 as the children of node 2,

and subtrees 5 and 7 as the children of 6.

62

y4

44 78

z x

17

T0

2 6

50

48 54

T1

3 5
88

T3

7
T2

1

Possible Configurations

14

8

15

Tri-node Restructuring
•  To rebalance the subtree rooted at z, we must perform

a restructuring.
•  Let (a, b, c) be an inorder listing of x, y, z.
•  Perform the rotations needed to make b the topmost

node of the three (to become parent of a and c).
•  4 subtrees (formerly children of x, y, z) become children

of a, b, c so as to maintain BST properties.
•  Connect b to the rest of the tree (to z’s former parent).
•  There are 4 cases:

–  2 cases of single rotations
–  2 cases of double rotations.

Single Rotations

16

9

Double Rotations

17

18

Restructuring Example

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0 T2

T3

x

y

z

2

3

4

5

6
7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54
1

T0 T1

T2

T3

x

y z

unbalanced...

...balanced

1
2

3

4

5

6

7

10

19

Restructure Algorithm
After an insertion, we start from the newly created node w and travel up

the tree until we find the first node z that is unbalanced.

Algorithm restructure(x):

 Input: A node x of a binary search tree T that has both a parent y
and a grandparent z
 Output: Tree T restructured by a rotation involving nodes x, y, and z.

1. Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let (T1,

T2, T3, T4) be an inorder listing of the the four subtrees of x, y, and
z, not rooted at x, y, or z.

2. Replace the subtree rooted at z with a new subtree rooted at b
3. Let a be the left child of b and let T1 and T2 be the left and right

subtrees of a, respectively.
4. Let c be the right child of b and let T3 and T4 be the left and right

subtrees of c, respectively.

20

Cut/Link vs. Tri-node Restructuring

•  Both methods give the same results.
•  Both methods have the same time complexity.
•  Time complexity = ?
•  Cut/link method:

–  Advantage: no case analysis; more elegant.
–  Disadvantage: can be more code to write.

11

AVL Trees 21

Removal
•  Removal begins as in a binary search tree (3 cases).
•  The tree may become unbalanced.

44

17

78 32 50

88 48

62

54

44

17

78 50

88 48

62

54

before deletion of 32 after deletion

Removal: Rebalancing
•  Let z be the first

unbalanced node
encountered while
travelling up the tree from
node w.

•  y = child of z with higher
height (y cannot be
ancestor of w)

•  x = child of y with higher
height, or either child if
two children of y have the
same height.

22

12

Removal: Restructuring
•  Perform operation

restructure(x) to restore
balance at the subtree
rooted at z.

•  As this restructuring may
upset the balance of
another node higher in
the tree, we must
continue checking for
balance until the root of T
is reached.

23

24

Removal Example

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T0

T1

T2

T3

y

x

0

Oh no, unbalanced!

8817

78

50

48

62

1

1

2

23

1

54
1

T0

T2

T3

y

x
44

4

z

0 Whew, balanced!

Choose either 78
or 50 as node x.

13

25

Removal Example (2)

Whew, balanced!

88

17 78

50

48

62
1 1

4

2

3

1
54

1

T0 T1 T2

y

x

0

44
2
z

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54
1

T0

T1 T2 T3

z

y

x

0

Oh no, unbalanced!

Choose 50 as x.

AVL Trees 26

AVL Tree Performance
•  AVL tree storing n items

–  The data structure uses O(n) space

–  A single restructuring takes O(1) time
•  using a linked-structure binary tree

–  Searching takes O(log n) time
•  height of tree is O(log n), no restructures needed

–  Insertion takes O(log n) time
•  initial find is O(log n)
•  restructuring up the tree, maintaining heights is O(log n)

–  Removal takes O(log n) time
•  initial find is O(log n)
•  restructuring up the tree, maintaining heights is O(log n)

14

Next lecture …

•  Heaps (9.3)

27

