13 February 2020

BINARY SEARCH TREES (11.1)

EECS 2011

2

Example Application

- Application: database of employee records
 - keys: social insurance numbers
 - add employee based on key
 - remove employee using key
 - search employee using key

Data Structure Choices

Operation	Doubly Linked List (unsorted)	Array (unsorted)
add	O()	O()
remove	O()	O()
search	O()	O()

Operation	Doubly Linked List (sorted)	Array (sorted)
add	O()	O()
remove	O()	O()
search	O()	O()

4

Map ADT (10.1.1)

- The Map ADT models a searchable collection of key-value items
- The main operations of a map are searching, inserting, and deleting items
- Keys must be unique.
- Applications:
 - · credit card database
 - SIN database
 - student/employee database

We are interested in the following Map ADT methods:

- get(k): if the map has an item with key k, returns its value, else, returns NULL
- put(k, e): inserts item (k, e) into the map
- remove(k): if the map has an item with key k, removes it from the dictionary and returns its value, else returns NULL
- size(), isEmpty()

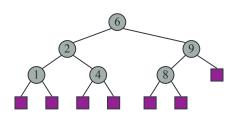
Binary Search Trees

 A binary search tree is a binary tree storing keys (or key-element pairs) at its internal nodes and satisfying the following property:

Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. We have $key(u) \le key(v) \le key(w)$

 External nodes (dummies) do not store items (non-empty proper binary trees, for coding simplicity)

- An inorder traversal of a binary search trees visits the keys in increasing order
- The left-most child has the smallest key
- The right-most child has the largest key



Example of BST

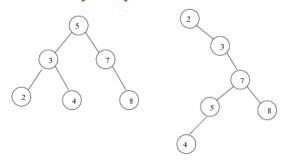
6

Contact the search tree

Contact the search tree

More Examples of BST

The same set of keys may have different BSTs.

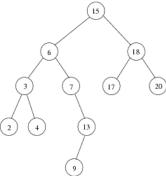


- Average depth of a node is O(logN).
- Maximum depth of a node is O(N).
- Where is the smallest key? largest key?

8

Inorder Traversal of BST

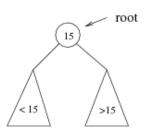
 Inorder traversal of BST prints out all the keys in sorted order.



Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

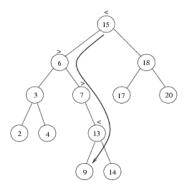
Searching BST

- If we are searching for 15, then we are done.
- If we are searching for a key < 15, then we should search in the left subtree.
- If we are searching for a key > 15, then we should search in the right subtree.



10

Example: Search for 9 ...



Search for 9:

- 1. compare 9:15(the root), go to left subtree;
- 2. compare 9:6, go to right subtree;
- 3. compare 9:7, go to right subtree;
- 4. compare 9:13, go to left subtree;
- 5. compare 9:9, found it!

Search Algorithm

- To search for a key k, we trace a downward path starting at the root
- The next node visited depends on the outcome of the comparison of k with the key of the current node
- If we reach a leaf, the key is not found and we return v (where the key should be if it will be inserted)
- Example: TreeSearch(4, root())
- · Running time: ?

```
Algorithm TreeSearch(k, v)

if isExternal (v)

return (v); // or return NO_SUCH_KEY

if k < key(v)

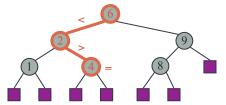
return TreeSearch(k, left(v))

else if k = key(v)

return v

else { k > key(v) }

return TreeSearch(k, right(v))
```



Insertion (distinct keys) To perform operation put(k, e), we first search for key k Assume k is not already in the tree, and let w be the leaf reached by the search We insert k at node w and expand w into an internal node using expandExternal(w, (k, e)) Example: expandExternal(w, (5, e)) with e having key 5 Running time: ?

Insertion Algorithm (distinct keys)

```
Algorithm TreeInsert( k, e ) {
    w = TreeSearch( k, root( ) );
    if ( k == key(w) )
        change w's value to e;
    else
        expandExternal( w, (k, e) );
}

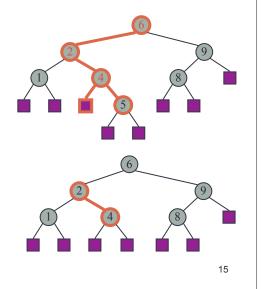
Algorithm expandExternal( w, k, e ) {
    if ( isExternal( w ) {
        make w an internal node, store k and e into w;
        add two dummy nodes as w's children;
    } else { error condition };
}
```

Deletion

- To perform operation remove(k), we first search for key k
- Assume key k is in the tree, and let v be the node storing k
- Three cases:
 - · Case 1: v has no internal children
 - Case 2: v has exactly one internal child
 - Case 3: v has two internal children

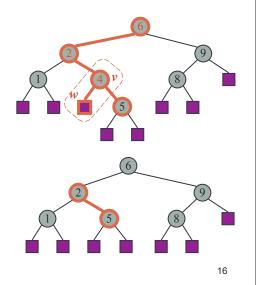
Deletion: Case 1

- Case 1: v has no children
- We simply remove v and its 2 dummy leaves.
- Replace v by a dummy node.
- Example: remove 5



Deletion: Case 2

- Case 1: v has exactly one child
- v's parent will "adopt"v's child.
- We connect v's parent to v's child, effectively removing v and the dummy node w from the tree.
- Example: remove 4



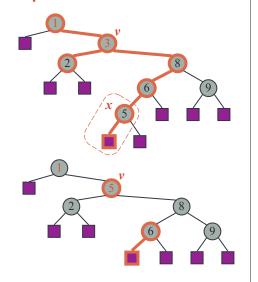
Deletion: Case 3

- Case 3: v has two children (and possibly grandchildren, great-grandchildren, etc.)
- Identify v's "heir": either one of the following two nodes:
 - the node x that immediately precedes v in an inorder traversal (right-most node in v's left subtree)
 - the node x that immediately follows v in an inorder traversal (left-most node in v's right subtree)
- Two steps:
 - copy content of x into node v (heir "inherits" node v);
 - remove *x* from the tree (use either case 1 or case 2 above).

Deletion: Case 3 Example • Example: remove 3 • Heir = ? • Running time of deletion algorithm: ?

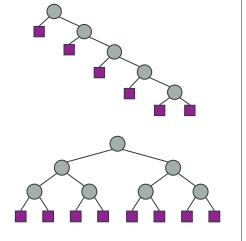
Deletion: Case 3 Steps

- Two steps of case 3:
 - copy content of x into node v (heir "inherits" node v);
 - remove x from the tree
 - if x has no child: call case 1
 - if x has one child: call case 2
 - x cannot have two children (why?)



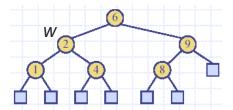
Performance

- Consider a map with n items implemented by means of a binary search tree of height h
 - the space used is O(n)
 - methods get(k), put(k,e) and remove(k) take O(h) time
- The height h is O(n) in the worst case and O(log n) in the best case



Appendix: Insertion with Duplicate Keys

- To perform operation put(k, e), we first search for key k
- Assume k is already in the tree, for example, k = 2
- Let w be the node returned by TreeSearch(k, root())



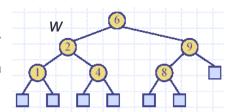
22

Insertion (duplicate keys)

- Call *TreeSearch*(*k*, *left*(*w*)) to find the leaf node for insertion
- · Can insert to either the left subtree or the right subtree
- Call *TreeSearch*(*k*, *right*(*w*)) to insert to the right subtree
- If there are more duplicate keys in the subtree, call *TreeSearch* for each key found, until reaching a leaf node for insertion.

Running time: ?

Note: if inserting the duplicate key into the <u>left</u> subtree, keep searching the <u>left</u> subtree after a key has been found.



Summary

- Methods get(k), put(k,e) and remove(k) take O(h) time.
- The insertion order and removal order determine h.
- The height h is
 - O(n) in the worst case
 - $O(\log n)$ in the best case
- Need self-balanced trees to achieve $O(\log n)$ time.

24

Next lecture ...

• AVL trees (11.3)