BINARY SEARCH TREES (11.1)

EECS 2011

Example Application

- Application: database of employee records
- keys: social insurance numbers
- add employee based on key
- remove employee using key
- search employee using key

Data Structure Choices

Operation Doubly Linked List (unsorted) Array (unsorted)
add O() O()
remove O() O()
search O() O()
Operation Doubly Linked List (sorted) Array (sorted)
add O() O()
remove o() o()
search o() O()

[B
Map ADT (10.1.1)

- The Map ADT models a We are interested in the _
searchable collection of key-value ~ following Map ADT methods:
items - get(k): if the map has an item

- The main operations of a map are ~ With key k, returns its value,
searching, inserting, and deleting ~ ©lse, returns NULL

items - put(k, e): inserts item (k, €) into
- Keys must be unique. themap
- Applications: - remove(k): if the map has an

. item with key k, removes it

- credit card database from the dictionary and returns
- SIN database its value, else returns NULL

- student/employee database - size(), iIsSEmpty()

Binary Search Trees

- A binary search tree is a An inorder traversal of a
binary free storing keys (or binary search trees visits the
key-element pairs) at'its keys in increasing order
internal nodes and satisfying « The left-most child has the
the following property: smallest key

- The right-most child has the
Let u, v, and w be three nodes largest key

such that « is in the left
subtree of v and w is in the
right subtree of v. We have
key(u) < key(v) < key(w)

- External nodes (dummies) do
not store items (non-empty
proper binary trees, for coding
simplicity)

s]
Example of BST

A binary search tree Not a binary search tree

More Examples of BST

The same set of keys may have different BSTs.

@/@ an

©

- Average depth of a node is O(logN).
- Maximum depth of a node is O(N).
- Where is the smallest key? largest key?

Inorder Traversal of BST

- Inorder traversal of BST prints out all the keys in sorted
order.

Inorder: 2, 3,4,6,7,9,13, 15,17, 18, 20

]
Searching BST

- If we are searching for 15, then we are done.

- If we are searching for a key < 15, then we should
search in the left subtree.

- If we are searching for a key > 15, then we should
search in the right subtree.

P root

Example: Search for 9 ...

Search for 9:

compare 9:15(the root), go to left subtree;
compare 9:6, go to right subtree;

compare 9:7, go to right subtree;

compare 9:13, go to left subtree;

compare 9:9, found it!

o P b

]
Search Algorithm

- To search for a key k, we | Algorithm TreeSearch(k, v)
trace a downward path if isExternal (v)

starting at the root return (v). /ot return NO SUCH KEY
- The next node visited

depends on the outcome if k < key(v)
of the comparison of k return TreeSearch(k, left(v))
with the key of the current else if /& = key(v)
node return v
- If we reach a leaf, the key else { k > key(v) }

is not found and we
return v (where the key
should be if it will be
inserted)
- Example:
TreeSearch(4, rook())

- Running time: ?

return TreeSearch(k, right(v))

Insertion (distinct keys)

- To perform operation put(k,

e), we first search for key k
- Assume k is not already in >

the tree, and let w be the leaf

reached by the search >
- We insert k at node w and

expand w into an internal w

node using

expandExternal(w, (k, e))

- Example:

expandExternal(w, (5, e))
with e having key 5

 Running time: ? W

]
Insertion Algorithm (distinct keys)

Algorithm Treelnsert(k, e) {
w = TreeSearch(k, root());
if (k ==key(w))
change w’s value to e;
else
expandExternal(w, (k, e));
}

Algorithm expandExternal(w, k, e) {
if (isExternal(w) {
make w an internal node, store k and e into w;
add two dummy nodes as w’ s children;
} else { error condition };

}

Deletion

- To perform operation remove(k), we first search
for key k

- Assume key k is in the tree, and let v be the node
storing &k
- Three cases:
- Case 1: v has no internal children

- Case 2: v has exactly one internal child
- Case 3: v has two internal children

Deletion: Case 1

- Case 1: v has no children

- We simply remove v and
its 2 dummy leaves.

- Replace v by a dummy
node.

- Example: remove 5

£R2

Deletion: Case 2

- Case 1: v has exactly
one child

- v’s parent will “adopt”
v’s child.

- We connect v’s parent to
v’s child, effectively
removing v and the
dummy node w from the
tree.

- Example: remove 4

Deletion: Case 3

- Case 3: v has two children (and possibly grandchildren,
great-grandchildren, etc.)

- Identify v’ s “heir”: either one of the following two nodes:

- the node x that immediately precedes v in an inorder
traversal (right-most node in v’ s left subtree)

- the node x that immediately follows v in an inorder
traversal (left-most node in v’ s right subtree)

- Two steps:
- copy content of x into node v (heir “inherits” node v);

- remove x from the tree (use either case 1 or case 2
above).

Deletion: Case 3 Example

- Example: remove 3
- Heir=7?

- Running time of deletion
algorithm: ?

e
Deletion: Case 3 Steps

- Two steps of case 3:

- copy content of x into
node v (heir “inherits”
node v);

- remove x from the tree
- if x has no child: call case 1
- if x has one child: call case 2

\ /
N /
\\‘//
- x cannot have two children
(why?) ¢

Performance

- Consider a map with n
items implemented by
means of a binary
search tree of height &
- the space used is O(n)

- methods get(k) , put(k,e)

and remove(k) take O(h)
time
- The height & is O(n) in
the worst case and O(log
n) in the best case

]
Appendix: Insertion with Duplicate Keys

- To perform operation put(k, e), we first search for key k
- Assume k is already in the tree, for example, k = 2
- Let w be the node returned by TreeSearch(k, root())

=]
Insertion (duplicate keys)

- Call TreeSearch(k, leftf(w)) to find the leaf node for insertion
- Can insert to either the left subtree or the right subtree
- Call TreeSearch(k, right(w)) to insert to the right subtree

- If there are more duplicate keys in the subtree, call TreeSearch for each
key found, until reaching a leaf node for insertion.

Running time: ?

Note: if inserting the duplicate key
into the /eft subtree, keep
searching the left subtree after a
key has been found.

11

Summary

Methods get(k) , put(k,e) and remove(k) take O(h) time.
The insertion order and removal order determine h.
The height & is

O(n) in the worst case

O(log n) in the best case
Need self-balanced trees to achieve O(log n) time.

Next lecture ...

- AVL trees (11.3)

12

