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Example Application 
• Application: database of employee records 

•  keys: social insurance numbers 
•  add employee based on key 
•  remove employee using key 
•  search employee using key 
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Data Structure Choices 
Operation Doubly Linked List (unsorted) Array (unsorted) 
add O( ) O( ) 
remove O( ) O( ) 
search O( ) O( ) 

Operation Doubly Linked List (sorted) Array (sorted) 
add O( ) O( ) 
remove O( ) O( ) 
search O( ) O( ) 
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Map ADT (10.1.1) 
•  The Map ADT models a 

searchable collection of key-value 
items 

•  The main operations of a map are 
searching, inserting, and deleting 
items 

•  Keys must be unique. 
•  Applications: 

•  credit card database 
•  SIN database 
•  student/employee database 

We are interested in the 
following Map ADT methods: 

•  get(k): if the map has an item 
with key k, returns its value, 
else, returns NULL 

•  put(k, e): inserts item (k, e) into 
the map 

•  remove(k): if the map has an 
item with key k, removes it 
from the dictionary and returns 
its value, else returns NULL 

•  size(), isEmpty() 
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Binary Search Trees 
•  A binary search tree is a 

binary tree storing keys (or 
key-element pairs) at its 
internal nodes and satisfying 
the following property: 

 Let u, v, and w be three nodes 
such that u is in the left 
subtree of v and w is in the 
right subtree of v. We have  
key(u) ≤ key(v) ≤ key(w) 

•  External nodes (dummies) do 
not store items (non-empty 
proper binary trees, for coding 
simplicity) 

•  An inorder traversal of a 
binary search trees visits the 
keys in increasing order 

•  The left-most child has the 
smallest key 

•  The right-most child has the 
largest key 
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Example of BST 
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A binary search tree Not a binary search tree 
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More Examples of BST 
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• Average depth of a node is O(logN). 
• Maximum depth of a node is O(N). 
• Where is the smallest key? largest key? 

The same set of keys may have different BSTs. 

Inorder Traversal of BST 
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•  Inorder traversal of BST prints out all the keys in sorted 
order. 

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20 
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Searching BST 
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•  If we are searching for 15, then we are done. 
•  If we are searching for a key < 15, then we should 

search in the left subtree. 
•  If we are searching for a key > 15, then we should 

search in the right subtree. 
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Search Algorithm 
•  To search for a key k, we 

trace a downward path 
starting at the root 

•  The next node visited 
depends on the outcome 
of the comparison of k 
with the key of the current 
node 

•  If we reach a leaf, the key 
is not found and we 
return v (where the key 
should be if it will be 
inserted) 

•  Example:  
     TreeSearch(4, root()) 
•  Running time: ? 
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Algorithm TreeSearch( k, v )   
 if isExternal (v) 

 return (v);      // or return NO_SUCH_KEY 
if k < key(v) 

 return TreeSearch( k, left(v) ) 
else if k = key(v) 

 return v 
else { k > key(v) } 

 return TreeSearch( k, right(v) ) 
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Insertion (distinct keys) 
•  To perform operation put(k, 

e), we first search for key k 
•  Assume k is not already in 

the tree, and let w be the leaf 
reached by the search 

•  We insert k at node w and 
expand w into an internal 
node using 
expandExternal(w, (k, e)) 

•  Example:  
 expandExternal(w, (5, e)) 
with e having key 5 

•  Running time: ? 
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Insertion Algorithm (distinct keys) 
Algorithm TreeInsert( k, e ) { 
    w = TreeSearch( k, root( ) );    
    if ( k == key(w) )   
        change w’s value to e; 
 else  

        expandExternal( w, (k, e) ); 
} 
 
Algorithm expandExternal( w, k, e ) { 
   if ( isExternal( w ) { 
      make w an internal node, store k and e into w; 
      add two dummy nodes as w’s children; 
   }  else  { error condition }; 
} 
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Deletion 
• To perform operation remove(k), we first search 
for key k 

• Assume key k is in the tree, and let v be the node 
storing k 

• Three cases:  
•  Case 1: v has no internal children 
•  Case 2: v has exactly one internal child 
•  Case 3: v has two internal children 
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Deletion: Case 1 
• Case 1: v has no children 
• We simply remove v and 

its 2 dummy leaves. 
• Replace v by a dummy 

node. 
• Example: remove 5 
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Deletion: Case 2 

• Case 1: v has exactly 
one child 

•  v’s parent will “adopt” 
v’s child. 

• We connect v’s parent to 
v’s child, effectively 
removing v and the 
dummy node w from the 
tree. 

• Example: remove 4 
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Deletion: Case 3 
• Case 3: v has two children (and possibly grandchildren, 

great-grandchildren, etc.) 
•  Identify v’s “heir”: either one of the following two nodes: 

•  the node x that immediately precedes v in an inorder 
traversal (right-most node in v’s left subtree) 

•  the node x that immediately follows v in an inorder 
traversal (left-most node in v’s right subtree) 

•  Two steps: 
•  copy content of x into node v (heir “inherits” node v); 
•  remove x from the tree (use either case 1 or case 2 

above). 

Deletion: Case 3 Example 
• Example: remove 3 
• Heir = ? 

• Running time of deletion 
algorithm: ? 
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Deletion: Case 3 Steps 
•  Two steps of case 3: 

•  copy content of x into 
node v (heir “inherits” 
node v); 

•  remove x from the tree  
•  if x has no child: call case 1 
•  if x has one child: call case 2 
•  x cannot have two children 

(why?) 
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Performance 
• Consider a map with n 

items implemented by 
means of a binary 
search tree of height h 
•  the space used is O(n) 
•  methods get(k) , put(k,e) 

and remove(k) take O(h) 
time 

•  The height h is O(n) in 
the worst case and O(log 
n) in the best case 
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Appendix: Insertion with Duplicate Keys  

•  To perform operation put(k, e), we first search for key k 
• Assume k is already in the tree, for example, k = 2 
•  Let w be the node returned by TreeSearch( k, root( ) ) 
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Insertion (duplicate keys) 
•  Call TreeSearch( k, left( w ) ) to find the leaf node for insertion 
•  Can insert to either the left subtree or the right subtree  
•  Call TreeSearch( k, right( w ) ) to insert to the right subtree 
•  If there are more duplicate keys in the subtree, call TreeSearch for each 

key found, until reaching a leaf node for insertion. 
 
 
Running time: ? 
 
Note: if inserting the duplicate key 

into the left subtree, keep 
searching the left subtree after a 
key has been found. 
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Summary 
•  Methods get(k) , put(k,e) and remove(k) take O(h) time. 
•  The insertion order and removal order determine h.  
•  The height h is  

•  O(n) in the worst case 
•  O(log n) in the best case 

•  Need self-balanced trees to achieve O(log n) time. 
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Next lecture … 
• AVL trees (11.3) 
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