
1

BINARY SEARCH TREES (11.1)
EECS 2011

13 February 2020 1

Example Application
• Application: database of employee records

•  keys: social insurance numbers
•  add employee based on key
•  remove employee using key
•  search employee using key

2

2

Data Structure Choices
Operation Doubly Linked List (unsorted) Array (unsorted)
add O() O()
remove O() O()
search O() O()

Operation Doubly Linked List (sorted) Array (sorted)
add O() O()
remove O() O()
search O() O()

3

Map ADT (10.1.1)
•  The Map ADT models a

searchable collection of key-value
items

•  The main operations of a map are
searching, inserting, and deleting
items

•  Keys must be unique.
•  Applications:

•  credit card database
•  SIN database
•  student/employee database

We are interested in the
following Map ADT methods:

•  get(k): if the map has an item
with key k, returns its value,
else, returns NULL

•  put(k, e): inserts item (k, e) into
the map

•  remove(k): if the map has an
item with key k, removes it
from the dictionary and returns
its value, else returns NULL

•  size(), isEmpty()

4

3

Binary Search Trees
•  A binary search tree is a

binary tree storing keys (or
key-element pairs) at its
internal nodes and satisfying
the following property:

 Let u, v, and w be three nodes
such that u is in the left
subtree of v and w is in the
right subtree of v. We have
key(u) ≤ key(v) ≤ key(w)

•  External nodes (dummies) do
not store items (non-empty
proper binary trees, for coding
simplicity)

•  An inorder traversal of a
binary search trees visits the
keys in increasing order

•  The left-most child has the
smallest key

•  The right-most child has the
largest key

5

6

9 2

4 1 8

Example of BST

6

A binary search tree Not a binary search tree

4

More Examples of BST

7

• Average depth of a node is O(logN).
• Maximum depth of a node is O(N).
• Where is the smallest key? largest key?

The same set of keys may have different BSTs.

Inorder Traversal of BST
8

•  Inorder traversal of BST prints out all the keys in sorted
order.

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

5

Searching BST

9

•  If we are searching for 15, then we are done.
•  If we are searching for a key < 15, then we should

search in the left subtree.
•  If we are searching for a key > 15, then we should

search in the right subtree.

10

6

Search Algorithm
•  To search for a key k, we

trace a downward path
starting at the root

•  The next node visited
depends on the outcome
of the comparison of k
with the key of the current
node

•  If we reach a leaf, the key
is not found and we
return v (where the key
should be if it will be
inserted)

•  Example:
 TreeSearch(4, root())
•  Running time: ?

11

Algorithm TreeSearch(k, v)
 if isExternal (v)

 return (v); // or return NO_SUCH_KEY
if k < key(v)

 return TreeSearch(k, left(v))
else if k = key(v)

 return v
else { k > key(v) }

 return TreeSearch(k, right(v))

6

9 2

4 1 8

<

>

=

Insertion (distinct keys)
•  To perform operation put(k,

e), we first search for key k
•  Assume k is not already in

the tree, and let w be the leaf
reached by the search

•  We insert k at node w and
expand w into an internal
node using
expandExternal(w, (k, e))

•  Example:
 expandExternal(w, (5, e))
with e having key 5

•  Running time: ?

12

6

9 2

4 1 8

6

9 2

4 1 8

5

<

>

>

w

w

7

Insertion Algorithm (distinct keys)
Algorithm TreeInsert(k, e) {
 w = TreeSearch(k, root());
 if (k == key(w))
 change w’s value to e;
 else

 expandExternal(w, (k, e));
}

Algorithm expandExternal(w, k, e) {
 if (isExternal(w) {
 make w an internal node, store k and e into w;
 add two dummy nodes as w’s children;
 } else { error condition };
}

13

Deletion
• To perform operation remove(k), we first search
for key k

• Assume key k is in the tree, and let v be the node
storing k

• Three cases:
•  Case 1: v has no internal children
•  Case 2: v has exactly one internal child
•  Case 3: v has two internal children

8

Deletion: Case 1
• Case 1: v has no children
• We simply remove v and

its 2 dummy leaves.
• Replace v by a dummy

node.
• Example: remove 5

6

9 2

4 1 8

5

15

6

9 2

4 1 8

Deletion: Case 2

• Case 1: v has exactly
one child

•  v’s parent will “adopt”
v’s child.

• We connect v’s parent to
v’s child, effectively
removing v and the
dummy node w from the
tree.

• Example: remove 4

6

9 2

4 1 8

5

v
w

6

9 2

5 1 8

16

9

Deletion: Case 3
• Case 3: v has two children (and possibly grandchildren,

great-grandchildren, etc.)
•  Identify v’s “heir”: either one of the following two nodes:

•  the node x that immediately precedes v in an inorder
traversal (right-most node in v’s left subtree)

•  the node x that immediately follows v in an inorder
traversal (left-most node in v’s right subtree)

•  Two steps:
•  copy content of x into node v (heir “inherits” node v);
•  remove x from the tree (use either case 1 or case 2

above).

Deletion: Case 3 Example
• Example: remove 3
• Heir = ?

• Running time of deletion
algorithm: ?

18

3

1

8

6 9

5

v

x

2

5

1

8

6 9

v

2

10

Deletion: Case 3 Steps
•  Two steps of case 3:

•  copy content of x into
node v (heir “inherits”
node v);

•  remove x from the tree
•  if x has no child: call case 1
•  if x has one child: call case 2
•  x cannot have two children

(why?)

19

3

1

8

6 9

5

v

x

2

5

1

8

6 9

v

2

Performance
• Consider a map with n

items implemented by
means of a binary
search tree of height h
•  the space used is O(n)
•  methods get(k) , put(k,e)

and remove(k) take O(h)
time

•  The height h is O(n) in
the worst case and O(log
n) in the best case

20

11

Appendix: Insertion with Duplicate Keys

•  To perform operation put(k, e), we first search for key k
• Assume k is already in the tree, for example, k = 2
•  Let w be the node returned by TreeSearch(k, root())

21

w

Insertion (duplicate keys)
•  Call TreeSearch(k, left(w)) to find the leaf node for insertion
•  Can insert to either the left subtree or the right subtree
•  Call TreeSearch(k, right(w)) to insert to the right subtree
•  If there are more duplicate keys in the subtree, call TreeSearch for each

key found, until reaching a leaf node for insertion.

Running time: ?

Note: if inserting the duplicate key

into the left subtree, keep
searching the left subtree after a
key has been found.

22

w

12

Summary
•  Methods get(k) , put(k,e) and remove(k) take O(h) time.
•  The insertion order and removal order determine h.
•  The height h is

•  O(n) in the worst case
•  O(log n) in the best case

•  Need self-balanced trees to achieve O(log n) time.

23

Next lecture …
• AVL trees (11.3)

24

