BINARY TREES (8.2)

1

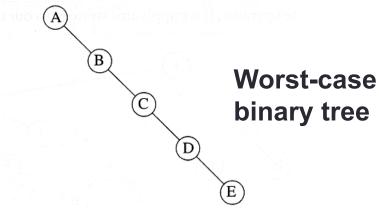
EECS 2011

Binary Trees

A tree in which each node can have at most two children.

 T_L

The depth of an "average" binary tree is considerably smaller than N. In the worst case, the depth can be as large as N – 1.



 T_R

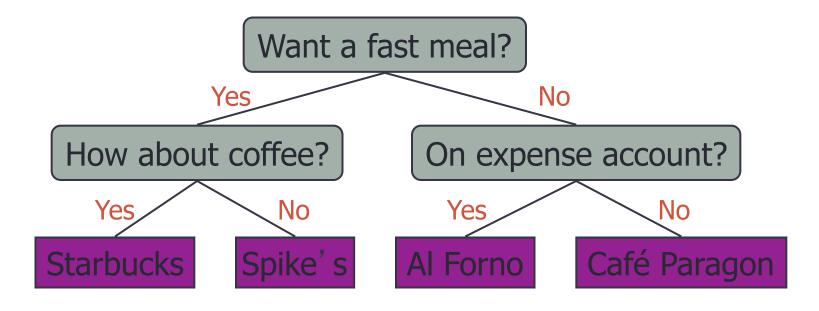
Generic

binary tree

Decision Tree

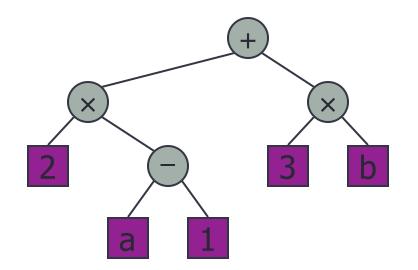
Binary tree associated with a decision process

- internal nodes: questions with yes/no answer
- external nodes: decisions
- Example: dining decision



Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression (2 × (a - 1) + (3 × b))



Tree ADT (review)

- We use positions to abstract nodes (position = node)
- Accessor methods:
 - position root()
 - position parent(p)
 - Iterable children(p)
 - Integer numChildren(p)
- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)

• Generic methods:

Trees

- integer size()
- boolean isEmpty()

5

- Iterator iterator()
- Iterable positions()

 Additional update methods may be defined by data structures implementing the Tree ADT

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT
- It inherits all the methods of the Tree ADT
- Additional methods:
 - position left(p)
 - position right(p)
 - position sibling(p)

 The above methods return null when there is no left, right, or sibling of p, respectively

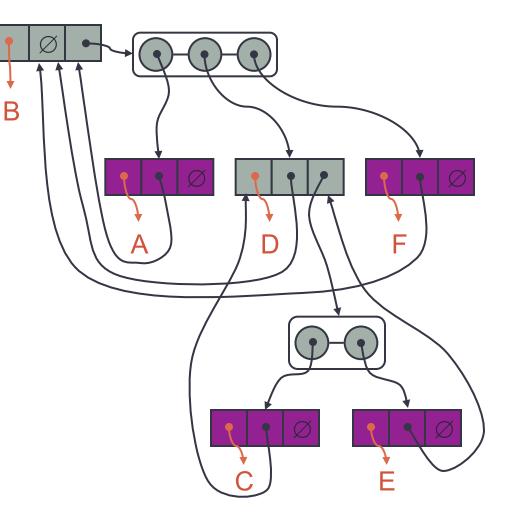
 Update methods may be defined by data structures implementing the BinaryTree ADT

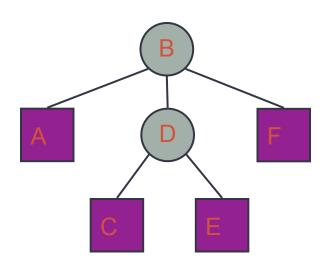
Implementing Binary Trees

- Arrays?
 - Discussed later
- Linked structure?

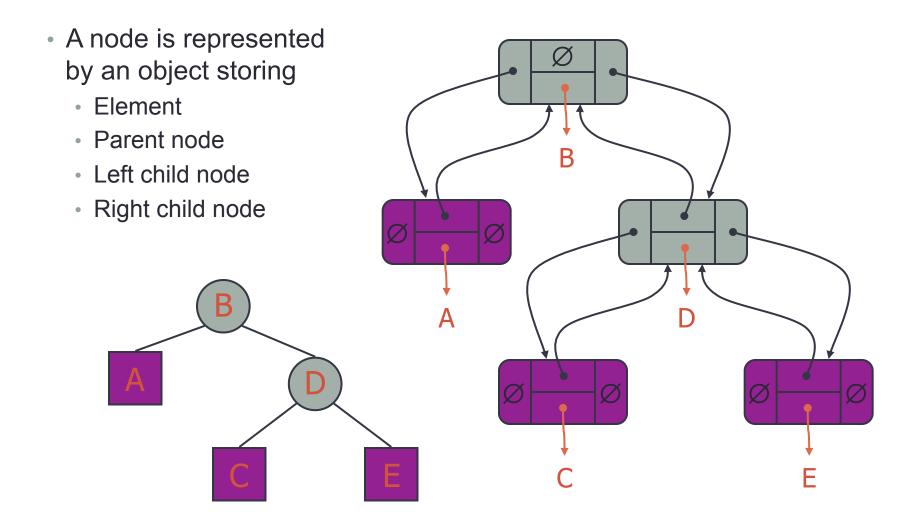
Linked Structure for General Trees (8.3.3)

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes





Linked Structure for Binary Trees (8.3.1)



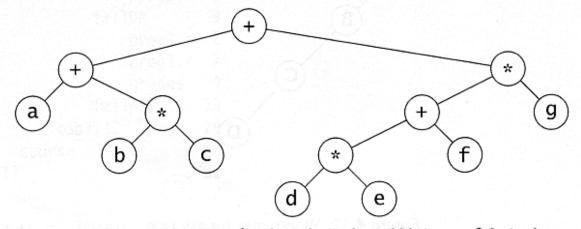
Linked Structure for Binary Trees

class BinaryNode { Object element; BinaryNode left; BinaryNode right; BinaryNode parent;

}

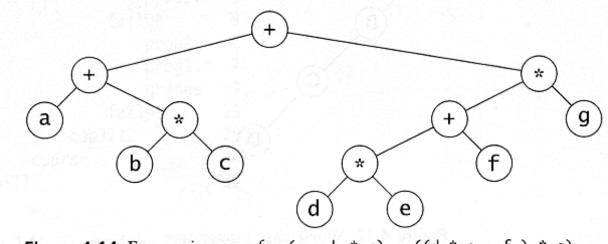
BinaryNode objects implement the Position ADT.

Java implementation of a linked binary tree: Code Fragments 8.8, 8.9



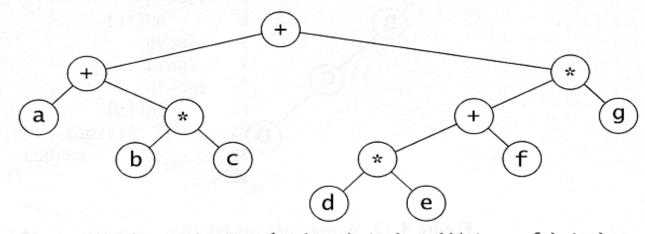
Binary Tree Traversal

- Preorder (node, left, right)
- Postorder (left, right, node)
- Inorder (left, node, right)



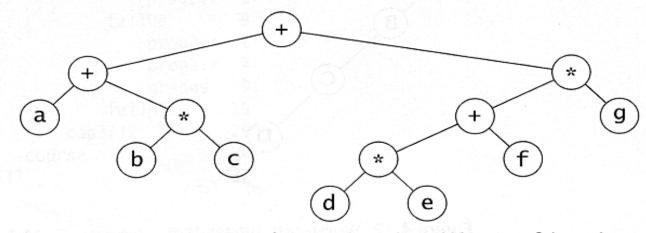
Preorder Traversal: Example

- Preorder traversal
 - node, left, right
 - prefix expression
 - + + a * b c * + * d e f g



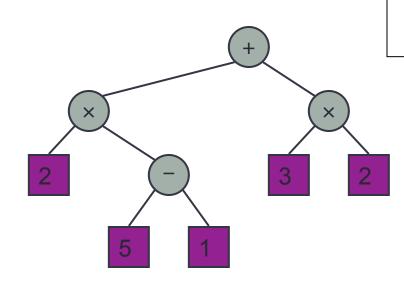
Postorder Traversal: Example

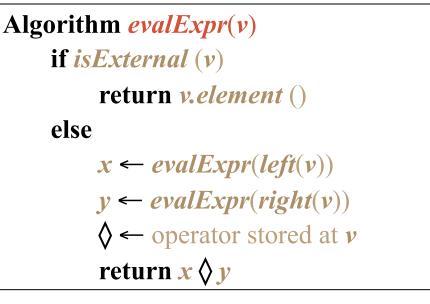
- Postorder traversal
 - left, right, node
 - postfix expression
 - a b c * + d e * f + g * +



Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees





Inorder Traversal (8.4.3)

6

5

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v

1

3

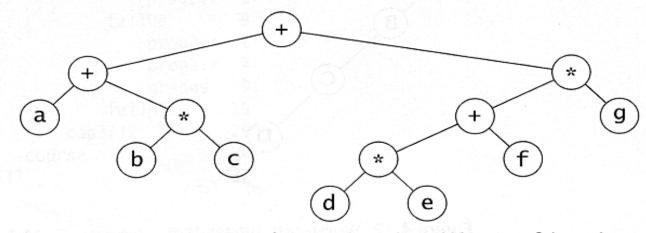
Algorithm *inOrder(v)* if *left* (v) ≠ null *inOrder* (*left* (v)) *visit(v)* if *right(v)* ≠ null *inOrder* (*right* (v))

Trees

9

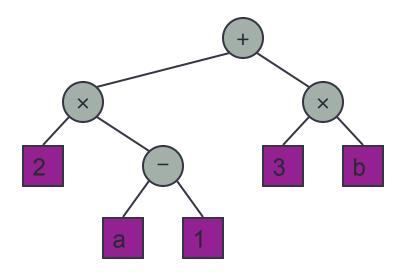
Inorder Traversal: Example

- Inorder traversal
 - left, node, right
 - infix expression
 - a + b * c + d * e + f * g



Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree



Algorithm printExpression(v) if left (v) ≠ null print("('')) inOrder (left(v)) print(v.element ()) if right(v) ≠ null inOrder (right(v)) print (")'')

$$((2 \times (a - 1)) + (3 \times b))$$

Pseudo-code for Binary Tree Traversal

Algorithm Preorder(x)

Input: x is the root of a subtree.

- 1. if $x \neq \text{NULL}$
- then output key(x);
- Preorder(left(x));
- Preorder(right(x));

Algorithm Inorder(x)

Input: x is the root of a subtree.

- 1. if $x \neq$ NULL
- then Inorder(left(x));
- output key(x);
- Inorder(right(x));

Algorithm Postorder(x)

Input: x is the root of a subtree.

- 1. if $x \neq$ NULL
- then Postorder(left(x));
- Postorder(right(x));
- output key(x);

Properties of Proper Binary Trees

- A binary trees is <u>proper</u> if each node has either zero or two children.
- Level: depth
 The root is at level 0
 Level *d* has at most 2^d nodes
- Notation:
 - nnumber of nodes
 - *e* number of external (leaf) nodes
 - *i* number of internal nodes *h*height

n = e + ie = i + 1 $h + 1 \le e \le 2^{h}$

$$n = 2e - 1$$

 $h \le i \le 2^{h} - 1$
 $2h+1 \le n \le 2^{h+1} - 1$

$$\log_2 e \le h \le e - 1$$

$$\log_2 (i+1) \le h \le i$$

$$\log_2 (n+1) - 1 \le h \le (n-1)/2$$

Properties of (General) Binary Trees

- Level: depth
 The root is at level 0
 Level *d* has at most 2^d
 nodes
- Notation:
 - *n* number of nodes
 - *e* number of external (leaf) nodes
 - *i* number of internal nodes *h*height

$$h+1 \le n \le 2^{h+1}-1$$

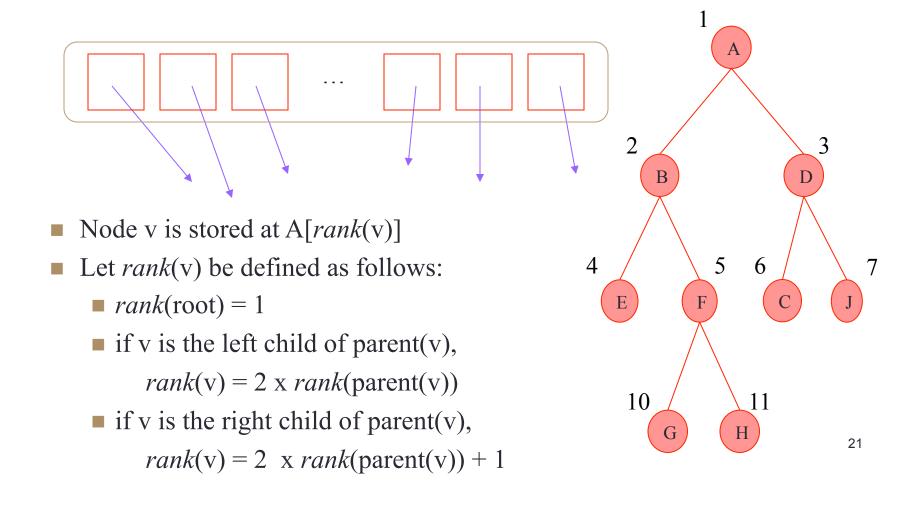
$$1 \leq e \leq 2^h$$

$$h \leq i \leq 2^h - 1$$

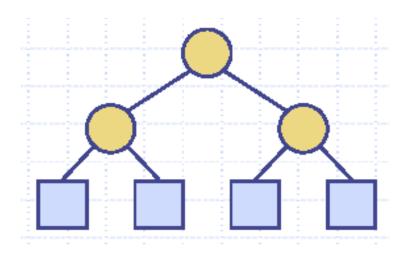
$$\log_2 \left(\boldsymbol{n+1} \right) - 1 \leq \boldsymbol{h} \leq \boldsymbol{n-1}$$

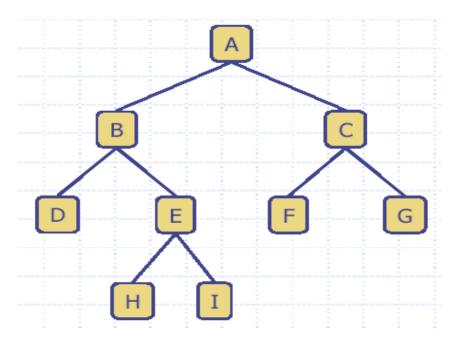
Array-Based Implementation (8.3.2)

Nodes are stored in an array.



Array Implementation of Binary Trees





Each node v is stored at index i defined as follows:

- If *v* is the root, *i* = 1
- The left child of *v* is in position 2*i*
- The right child of v is in position 2i + 1
- The parent of *v* is in position ???

Space Analysis of Array Implementation

• n: number of nodes of binary tree T

- *p_M*: index of the rightmost leaf of the corresponding *full* binary tree (or size of the full tree)
- *N*: size of the array needed for storing *T*; $N = p_M + 1$ Best-case scenario: balanced, full binary tree $p_M = n$ Worst case scenario: unbalanced tree
- Height *h* = *n* 1
- Size of the corresponding full tree:

$$p_M = 2^{h+1} - 1 = 2^n - 1$$

•
$$N = 2^n$$

Space usage: $O(2^n)$

Arrays versus Linked Structures

Linked structure

- Slower operations due to pointer manipulations
- Use less space if the tree is unbalanced
- AVL trees: rotation (restructuring) code is simple

Arrays

- Faster operations
- Use less space if the tree is balanced (no pointers)
- AVL trees: rotation (restructuring) code is complex

Next lecture ...

• Binary Search Trees (11.1)