BINARY TREES (8.2)

EECS 2011

Binary Trees
- A tree in which each node can have at most two
children.
Generic
binary tree

- The depth of an “average” binary tree is considerably
smaller than N. In the worst case, the depth can be as
large as N — 1.

Worst-case
binary tree

Decision Tree

- Binary tree associated with a decision process
- internal nodes: questions with yes/no answer
- external nodes: decisions

- Example: dining decision

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
- internal nodes: operators
- external nodes: operands

- Example: arithmetic expression tree for the expression
(2x(@-1)+ (3 xDb))

e s
Tree ADT (review)

- We use positions to abstract Generic methods:

nodes (position = node) - integer size()
« boolean isEmpty()

_ Iterator iterator()
- Accessor methods: . Iterable positions()

- position root()

- position parent(p)

- Iterable children(p)

- Integer numChildren(p)

* Additional update methods
may be defined by data

structures implementing the
* Query methods: Tree ADT

= boolean isInternal(p)
= boolean isExternal(p)
= boolean isRoot(p)

BinaryTree ADT

The BinaryTree ADT
extends the Tree ADT

It inherits all the
methods of the Tree
ADT

Additional methods:
position left(p)
position right(p)
nosition sibling(p)

Trees 6

The above methods
return null when
there is no left, right,
or sibling of p,
respectively

Update methods may
be defined by data
structures
implementing the
BinaryTree ADT

Implementing Binary Trees

- Arrays?
- Discussed later
- Linked structure?

Linked Structure for General Trees (8.3.3)

- A node is represented by
an object storing

- Element
- Parent node
- Sequence of children nodes

1;

B

L
Linked Structure for Binary Trees (8.3.1)

- A node is represented
by an object storing

- Element

- Parent node

- Left child node
- Right child node

e
Linked Structure for Binary Trees

class BinaryNode {
Object element;
BinaryNode left;
BinaryNode right;
BinaryNode parent;
}
- BinaryNode objects implement the Position ADT.
- Java implementation of a linked binary tree: Code Fragments 8.8, 8.9

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d *e + f) * g)

S
Binary Tree Traversal

- Preorder (node, left, right)
- Postorder (left, right, node)
- Inorder (left, node, right)

Figure 4.14 Expressiontree for (@ + b * ¢) + ((d *e + f) * @)

Preorder Traversal: Example

- Preorder traversal
- node, left, right
- prefix expression
- ++a*bc*+*defg

Figure 4.14 Expression tree for (a + b * ¢) + ((d * e + £) * g)

Postorder Traversal: Example

- Postorder traversal
- left, right, node
- postfix expression
cabc*+de*f+g*+

Figure 4.14 Expression tree for (a + b * ¢) + ((d * e + £) * g)

S s e
Evaluate Arithmetic Expressions

- Specialization of a postorder | Algorithm evalExpr(v)

traversal if isExternal (v)
- recursive method returning return v.element ()
the value of a subtree else
- when visiting an internal x < evalExpr(left(v))
node, combine the values of — evalExpr(right(v))
the subtrees Y Prirts

{) <— operator stored at v
return x { y

Inorder Traversal (8.4.3)

- In an inorder traversal a node | Algorithm inOrder(v)

is visited after its left subtree .
and before its right subtree if left (v) 7 null

- Application: draw a binary inOrder (left (v))
tree VISit(v)

- X(v) = inorder rank of v

- y(v) = depth of v if right(v) # null

inOrder (right (v))

Inorder Traversal: Example

- Inorder traversal
- left, node, right
- Infix expression
catb*c+d*e+f*g

Figure 4.14 Expression tree for (a + b * ¢) + ((d * e + £) * g)

e
Print Arithmetic Expressions

- Specialization of an inorder Algorithm printExpression(v)
traversal .
- print operand or operator when it leﬁ (v) f I,ll,lll
visiting node prini(()
. print “(“ before traversing left :
g[ulgtreé efore traversing le inOrder (left(v))
- print “)“ after traversing right print(v.element ())
subtree ep -
if right(v) # null
inOrder (right(v))
print (“))

(2x@-1))+ (3 xb))

T e
Pseudo-code for Binary Tree Traversal

Algorithm Preorder(z) Algorithm Inorder(z)

Input: = is the root of a subtree. Input: = is the root of a subtree.
1. ifaz % NULL 1. ifz % NULL

2 then output key(z); 2 then Inorder(left(z));

3. Preorder(left(z)); 3. output key(z);

4 Preorder(right(z)); 4 Inorder(right(z));

Algorithm Postorder(x)

Input: = is the root of a subtree.
1. ifxz% NULL

2 then Postorder(left(z));
3. Postorder(right(z));
4 output key(zx);

Properties of Proper Binary Trees

- A binary trees is proper if

. n=e-+i
each node has either zero or .
two children. e=i+1
- Level: depth h+l <ses<?2"
The root is at level 0
Level d has at most 29 nodes n=2e-1
- Notation: h <j<2h_1
nnumber of nodes I+l < n <2h_1
e number of external (leaf)
nodes
, , log,e=s h = e—1
i number of internal nodes 1 " p]
hheight og,(i+1)= h = i

log,(n+1)-1=< h=<s(n-1)/2

Properties of (General) Binary Trees

- Level: depth h+tl = n =211
The root is at level 0
Level d has at most 29 l< e <2
nodes

- Notation: h <i<?2h_1

nnumber of nodes

e number of external (leaf)
nodes

i number of internal nodes
hheight

log,(n+1)- 1< h=<s n-1

-
Array-Based Implementation (8.3.2)

- Nodes are stored in an array.

JO] - [\}
\\\ R 3

m Node v is stored at A[rank(v)]
m Let rank(v) be defined as follows: 4 5 6 7
m rank(root) = 1
m 1f v 1s the left child of parent(v),
rank(v) = 2 x rank(parent(v))

m if v is the right child of parent(v),
rank(v) =2 x rank(parent(v)) + 1

21

Array Implementation of Binary Trees

Each node v is stored at index /i defined as follows:
- If vis the root, i = 1

- The left child of v is in position 2j

- The right child of v is in position 2/ + 1

- The parent of v is in position ?7?

22

-
Space Analysis of Array Implementation

- n: number of nodes of binary tree T

- pys: index of the rightmost leaf of the corresponding full
binary tree (or size of the full tree)

- N: size of the array needed for storing T; N=p,, + 1
Best-case scenario: balanced, full binary tree p,, = n
Worst case scenario: unbalanced tree
- Height h=n -1
- Size of the corresponding full tree:
Py = 2h+l _ 1=2n_ |
« N =2n
Space usage: O(2")

23

Arrays versus Linked Structures

Linked structure Arrays

- Slower operations due to - Faster operations
pointer manipulations

- Use less space if the tree - Use less space if the tree
Is unbalanced is balanced (no pointers)

- AVL trees: rotation - AVL trees: rotation
(restructuring) code is (restructuring) code is

simple complex

24

Next lecture ...

- Binary Search Trees (11.1)

