
BINARY TREES (8.2)
EECS 2011

31 January 2020 1

Binary Trees

2

• A tree in which each node can have at most two
children.

• The depth of an “average” binary tree is considerably
smaller than N. In the worst case, the depth can be as
large as N – 1.

Generic
binary tree

Worst-case
binary tree

Decision Tree
• Binary tree associated with a decision process

•  internal nodes: questions with yes/no answer
•  external nodes: decisions

• Example: dining decision

3

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

Arithmetic Expression Tree
• Binary tree associated with an arithmetic expression

•  internal nodes: operators
•  external nodes: operands

• Example: arithmetic expression tree for the expression
(2 × (a - 1) + (3 × b))

4

+

××

-2

a 1

3 b

Trees 5

Tree ADT (review)
•  We use positions to abstract

nodes (position ≡ node)

•  Accessor methods:
•  position root()
•  position parent(p)
•  Iterable children(p)
•  Integer numChildren(p)

• Query methods:
n  boolean isInternal(p)
n  boolean isExternal(p)
n  boolean isRoot(p)

•  Generic methods:
•  integer size()
•  boolean isEmpty()
•  Iterator iterator()
•  Iterable positions()

•  Additional update methods
may be defined by data
structures implementing the
Tree ADT

Trees 6

BinaryTree ADT
• The BinaryTree ADT
extends the Tree ADT

• It inherits all the
methods of the Tree
ADT

• Additional methods:
•  position left(p)
•  position right(p)
•  position sibling(p)

• The above methods
return null when
there is no left, right,
or sibling of p,
respectively

• Update methods may
be defined by data
structures
implementing the
BinaryTree ADT

Implementing Binary Trees
• Arrays?

• Discussed later
•  Linked structure?

7

Linked Structure for General Trees (8.3.3)
•  A node is represented by

an object storing
•  Element
•  Parent node
•  Sequence of children nodes

Trees 8

∅

B

D A

C E

F

B

∅ ∅

A D F

∅

C

∅

E

Linked Structure for Binary Trees (8.3.1)

•  A node is represented
by an object storing
•  Element
•  Parent node
•  Left child node
•  Right child node

9

B

D A

C E

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅

Linked Structure for Binary Trees
class BinaryNode {
 Object element;
 BinaryNode left;
 BinaryNode right;
 BinaryNode parent;

}
•  BinaryNode objects implement the Position ADT.
•  Java implementation of a linked binary tree: Code Fragments 8.8, 8.9

10

Binary Tree Traversal

• Preorder (node, left, right)
• Postorder (left, right, node)
•  Inorder (left, node, right)

11

Preorder Traversal: Example

12

• Preorder traversal
•  node, left, right
•  prefix expression

•  + + a * b c * + * d e f g

Postorder Traversal: Example

13

• Postorder traversal
•  left, right, node
•  postfix expression

•  a b c * + d e * f + g * +

Trees 14

Evaluate Arithmetic Expressions

•  Specialization of a postorder
traversal
•  recursive method returning

the value of a subtree
•  when visiting an internal

node, combine the values of
the subtrees

Algorithm evalExpr(v)
if isExternal (v)

return v.element ()
else

 x ← evalExpr(left(v))
 y ← evalExpr(right(v))
 ◊ ← operator stored at v
return x ◊ y +

××

-2

5 1

3 2

Trees 15

Inorder Traversal (8.4.3)
•  In an inorder traversal a node

is visited after its left subtree
and before its right subtree

•  Application: draw a binary
tree
•  x(v) = inorder rank of v
•  y(v) = depth of v

Algorithm inOrder(v)
if left (v) ≠ null

inOrder (left (v))
visit(v)
if right(v) ≠ null

inOrder (right (v))

3

1

2

5

6

7 9

8

4

Inorder Traversal: Example

16

•  Inorder traversal
•  left, node, right
•  infix expression

•  a + b * c + d * e + f * g

Trees 17

Print Arithmetic Expressions

•  Specialization of an inorder
traversal
•  print operand or operator when

visiting node
•  print “(“ before traversing left

subtree
•  print “)“ after traversing right

subtree

Algorithm printExpression(v)
if left (v) ≠ null

 print(“(’’)
inOrder (left(v))

print(v.element ())
if right(v) ≠ null

inOrder (right(v))
 print (“)’’)

+

××

-2

a 1

3 b
((2 × (a - 1)) + (3 × b))

Pseudo-code for Binary Tree Traversal

18

Properties of Proper Binary Trees
•  A binary trees is proper if

each node has either zero or
two children.

•  Level: depth
 The root is at level 0
 Level d has at most 2d nodes

•  Notation:
n number of nodes
e number of external (leaf)

nodes
i number of internal nodes
h height

n = e + i
e = i + 1
h+1 ≤ e ≤ 2h

n = 2e - 1
h ≤ i ≤ 2h – 1
2h+1 ≤ n ≤ 2h+1 – 1

log2 e ≤ h ≤ e – 1
log2 (i + 1) ≤ h ≤ i
log2 (n + 1) - 1 ≤ h ≤ (n - 1)/2

19

Properties of (General) Binary Trees

•  Level: depth
 The root is at level 0
 Level d has at most 2d
nodes

• Notation:
n number of nodes
e number of external (leaf)

nodes
i number of internal nodes
h height

h+1 ≤ n ≤ 2h+1 – 1

1 ≤ e ≤ 2h

h ≤ i ≤ 2h – 1

log2 (n + 1) - 1 ≤ h ≤ n - 1

20

21

Array-Based Implementation (8.3.2)
• Nodes are stored in an array.

…

n  Node v is stored at A[rank(v)]
n  Let rank(v) be defined as follows:

n  rank(root) = 1
n  if v is the left child of parent(v),

rank(v) = 2 x rank(parent(v))
n  if v is the right child of parent(v),

rank(v) = 2 x rank(parent(v)) + 1

1

2 3

6 7 4 5

10 11

A

H G

F E

D

C

B

J

22

Array Implementation of Binary Trees

Each node v is stored at index i defined as follows:
•  If v is the root, i = 1
•  The left child of v is in position 2i
•  The right child of v is in position 2i + 1
•  The parent of v is in position ???

23

Space Analysis of Array Implementation

•  n: number of nodes of binary tree T
•  pM: index of the rightmost leaf of the corresponding full

binary tree (or size of the full tree)
• N: size of the array needed for storing T; N = pM + 1
Best-case scenario: balanced, full binary tree pM = n
Worst case scenario: unbalanced tree
• Height h = n – 1
• Size of the corresponding full tree:
 pM = 2h+1 – 1= 2n – 1

• N = 2n
Space usage: O(2n)

24

Arrays versus Linked Structures

Linked structure
• Slower operations due to

pointer manipulations
• Use less space if the tree

is unbalanced
• AVL trees: rotation

(restructuring) code is
simple

Arrays
• Faster operations

• Use less space if the tree
is balanced (no pointers)

• AVL trees: rotation
(restructuring) code is
complex

Next lecture …
• Binary Search Trees (11.1)

25

