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Binary Trees 
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• A tree in which each node can have at most two 
children. 

• The depth of an “average” binary tree is considerably 
smaller than N.  In the worst case, the depth can be as 
large as N – 1. 

Generic  
binary tree 

Worst-case 
binary tree 



Decision Tree 
• Binary tree associated with a decision process 

•  internal nodes: questions with yes/no answer 
•  external nodes: decisions 

• Example: dining decision 
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Want a fast meal? 

How about coffee? On expense account? 

Starbucks Spike’s Al Forno Café Paragon 

Yes No 

Yes No Yes No 



Arithmetic Expression Tree 
• Binary tree associated with an arithmetic expression 

•  internal nodes: operators 
•  external nodes: operands 

• Example: arithmetic expression tree for the expression 
(2 × (a - 1) + (3 × b)) 
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Tree ADT (review) 
•  We use positions to abstract 

nodes (position ≡ node) 

•  Accessor methods: 
•  position root() 
•  position parent(p) 
•  Iterable children(p) 
•  Integer numChildren(p) 

• Query methods: 
n  boolean isInternal(p) 
n  boolean isExternal(p) 
n  boolean isRoot(p) 

•  Generic methods: 
•  integer size() 
•  boolean isEmpty() 
•  Iterator iterator() 
•  Iterable positions() 

•  Additional update methods 
may be defined by data 
structures implementing the 
Tree ADT 
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BinaryTree ADT 
• The BinaryTree ADT 
extends the Tree ADT 

• It inherits all the 
methods of the Tree 
ADT 

• Additional methods: 
•  position left(p) 
•  position right(p) 
•  position sibling(p) 

• The above methods 
return null when 
there is no left, right, 
or sibling of p, 
respectively 

• Update methods may 
be defined by data 
structures 
implementing the 
BinaryTree ADT 



Implementing Binary Trees 
• Arrays? 

• Discussed later 
•  Linked structure? 
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Linked Structure for General Trees (8.3.3) 
•  A node is represented by 

an object storing 
•  Element 
•  Parent node 
•  Sequence of children nodes 
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Linked Structure for Binary Trees (8.3.1) 

•  A node is represented 
by an object storing 
•  Element 
•  Parent node 
•  Left child node 
•  Right child node 
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Linked Structure for Binary Trees 
class BinaryNode { 
 Object  element; 
 BinaryNode  left; 
 BinaryNode  right; 
 BinaryNode  parent; 

} 
•  BinaryNode objects implement the Position ADT. 
•  Java implementation of a linked binary tree: Code Fragments 8.8, 8.9 
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Binary Tree Traversal 

• Preorder  (node, left, right) 
• Postorder  (left, right, node) 
•  Inorder  (left, node, right) 
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Preorder Traversal: Example 
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• Preorder traversal 
•   node, left, right 
•   prefix expression 

•   + + a * b c * + * d e f g 



Postorder Traversal: Example 
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• Postorder traversal 
•   left, right, node 
•   postfix expression 

•   a b c * + d e * f + g * + 
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Evaluate Arithmetic Expressions 

•  Specialization of a postorder 
traversal 
•  recursive method returning 

the value of a subtree 
•  when visiting an internal 

node, combine the values of 
the subtrees 

Algorithm evalExpr(v) 
if isExternal (v) 

return v.element () 
else 

 x ← evalExpr(left(v)) 
 y ← evalExpr(right(v)) 
 ◊ ← operator stored at v 
return x ◊ y +

××
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Inorder Traversal (8.4.3) 
•  In an inorder traversal a node 

is visited after its left subtree 
and before its right subtree 

•  Application: draw a binary 
tree 
•  x(v) = inorder rank of v 
•  y(v) = depth of v 

Algorithm inOrder(v) 
if left (v) ≠ null 

inOrder (left (v)) 
visit(v) 
if right(v) ≠ null 

inOrder (right (v)) 
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Inorder Traversal: Example 
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•  Inorder traversal 
•   left, node, right 
•   infix expression 

•   a + b * c + d * e + f * g 
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Print Arithmetic Expressions 

•  Specialization of an inorder 
traversal 
•  print operand or operator when 

visiting node 
•  print “(“ before traversing left 

subtree 
•  print “)“ after traversing right 

subtree 

Algorithm printExpression(v) 
if left (v) ≠ null 

 print(“(’’) 
inOrder (left(v)) 

print(v.element ()) 
if right(v) ≠ null 

inOrder (right(v)) 
 print (“)’’) 

+
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a 1 

3 b 
((2 × (a - 1)) + (3 × b)) 



Pseudo-code for Binary Tree Traversal 

18 



Properties of Proper Binary Trees 
•  A binary trees is proper if 

each node has either zero or 
two children. 

•  Level: depth 
 The root is at level 0 
 Level d has at most 2d nodes 

•  Notation: 
n number of nodes 
e number of external (leaf) 

nodes 
i  number of internal nodes 
h height 

n = e + i 
e = i + 1 
h+1 ≤ e ≤ 2h 

 
n = 2e - 1 
h       ≤  i  ≤ 2h – 1 
2h+1 ≤  n  ≤ 2h+1 – 1 
 
log2 e ≤  h  ≤  e – 1 
log2 (i + 1) ≤  h  ≤  i 
log2 (n + 1) - 1 ≤  h ≤ (n - 1)/2 
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Properties of (General) Binary Trees 

•  Level: depth 
 The root is at level 0 
 Level d has at most 2d 
nodes 

• Notation: 
n number of nodes 
e number of external (leaf) 

nodes 
i  number of internal nodes 
h height 

h+1 ≤  n  ≤ 2h+1 – 1 
 
1 ≤  e  ≤ 2h 
 
h       ≤  i  ≤ 2h – 1 
 
log2 (n + 1) - 1 ≤  h ≤  n - 1 
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Array-Based Implementation (8.3.2) 
• Nodes are stored in an array. 

… 

n  Node v is stored at A[rank(v)] 
n  Let rank(v) be defined as follows: 

n  rank(root) = 1 
n  if v is the left child of parent(v),   

rank(v) = 2 x rank(parent(v)) 
n  if v is the right child of parent(v),   

rank(v) = 2  x rank(parent(v)) + 1 
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Array Implementation of Binary Trees 

Each node v is stored at index i defined as follows: 
•  If v is the root, i = 1 
•  The left child of v is in position  2i 
•  The right child of v is in position  2i + 1 
•  The parent of v is in position ??? 
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Space Analysis of Array Implementation 

•  n: number of nodes of binary tree T 
•  pM: index of the rightmost leaf of the corresponding full 

binary tree (or size of the full tree) 
• N: size of the array needed for storing T; N = pM + 1 
Best-case scenario: balanced, full binary tree pM = n 
Worst case scenario: unbalanced tree 
• Height h = n – 1 
• Size of the corresponding full tree:  
 pM = 2h+1 – 1= 2n – 1 

• N = 2n  
Space usage: O(2n) 
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Arrays versus Linked Structures 

Linked structure 
• Slower operations due to 

pointer manipulations 
• Use less space if the tree 

is unbalanced 
• AVL trees: rotation 

(restructuring) code is 
simple 

Arrays 
• Faster operations 

• Use less space if the tree 
is balanced (no pointers) 

• AVL trees: rotation 
(restructuring) code is 
complex 



Next lecture … 
• Binary Search Trees (11.1) 
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