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Trees 
•  Linear access time of linked lists is prohibitive 

• Does there exist any simple data structure for which the 
running time of most operations (search, insert, delete) 
is O(log N)? 

• Trees 
• Basic concepts 
• Tree traversal 
• Binary trees 
• Binary search trees 
• AVL trees 
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General Trees (8.1) 
•  In computer science, a 

tree is an abstract model 
of a hierarchical structure 

•  A tree consists of nodes 
with a parent-child relation 

•  Applications: 
•  Organization charts 
•  File systems 
•  Programming 

environments 
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Example: File Systems 
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Example: Expression Trees 

•  Leaves are operands (constants or variables) 
• The internal nodes contain operators 
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Recursive Definition 
• A tree is a collection of nodes. 

•   The collection can be empty. 
•   Otherwise, a tree consists of a distinguished node r 

(the root), and zero or more nonempty subtrees T1, 
T2, . . . , Tk, each of whose roots is connected by a 
directed edge from r. 

6 



Applying the Recursive Definition 
void operation ( T ) { 
   if ( T is not empty ) 
      for every subtree Ti  of T  
         operation( Ti ) 

} 
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subtree 

Tree Terminology 
•  Root: node without parent (A) 
•  Internal node: node with at least one 

child (A, B, C, F) 
•  External node (a.k.a. leaf ): node 

without children (E, I, J, K, G, H, D) 
•  Ancestors of a node: parent, 

grandparent, grand-grandparent, 
etc. 

•  Depth of a node: number of 
ancestors 

•  Height of a tree: maximum depth of 
any node (3 in the example) 

•  Descendant of a node: child, 
grandchild, grand-grandchild, etc. 

A 

B D C 

G H E F 

I J K 

o  Subtree: tree consisting of a 
node and its descendants 



Tree Terminology (2) 
• Siblings: nodes having the same parent 
• Path: a sequence of edges 
•  Length of path: number of edges on the path 
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Tree Terminology (3) 

• Height of a node 
•  length of the longest path from that node to a leaf 
•  all leaves are at height 0 

• The height of a tree  = the height of the root 
    = maximum depth of any node 
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Tree ADT 
•  We use positions to abstract 

nodes (position ≡ node) 

•  Accessor methods: 
•  position root() 
•  position parent(p) 
•  Iterable children(p) 
•  Integer numChildren(p) 

• Query methods: 
n  boolean isInternal(p) 
n  boolean isExternal(p) 
n  boolean isRoot(p) 

•  Generic methods: 
•  integer size() 
•  boolean isEmpty() 
•  Iterator iterator(): returns 

an iterator of all elements 
in the tree. 

•  Iterable positions(): returns 
an iterable collection of all 
positions of the tree. 

 
•  Additional update methods 

may be defined by data 
structures implementing the 
Tree ADT 



Java Interface 
Methods for a Tree interface: 
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Implementing Trees 
• Arrays ? 
•  Linked structures (pointers) ? 
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Linked Structure for Trees (8.3.3) 
•  A node is represented by 

an object storing 
•  Element 
•  Parent node 
•  Sequence of children nodes 
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Tree Traversal Algorithms (8.4) 
• Preorder 

•  Visit v first 
•  Then visit the descendants of v  

• Postorder 
•  Visit the descendants of v first 
•  Then visit v last 
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Preorder Traversal 
•  A traversal visits the nodes of a 

tree in a systematic manner 
•  In a preorder traversal, a node is 

visited before its descendants  
•  Application: print a structured 

document 

16 

Make Money Fast! 
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Algorithm preOrder(v) 
visit(v) 
for each child w of v 

 preOrder (w) 



An Example 
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Postorder Traversal 
•  In a postorder traversal, a node 

is visited after its descendants 
•  Application: compute space 

used by files in a directory and 
its subdirectories 
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Algorithm postOrder(v) 
for each child w of v 

 postOrder (w) 
visit(v) 

cs16/ 

homeworks/ todo.txt 
1K programs/ 

DDR.java 
10K 

Stocks.java 
25K 

h1c.doc 
3K 

h1nc.doc 
2K 

Robot.java 
20K 

9 

3 

1 

7 

2 4 5 6 

8 



Applications 
• Either preorder traversal or postorder traversal can be 

used when the order of computation is not important. 
 Example: printing the contents of a tree (in any order) 

• Preorder traversal is required when we must perform a 
computation for each node before performing any 
computations for its descendents. 

  Example: Printing the headings of chapters, sections, sub-
sections of a book. 

• Postorder traversal is needed when the computation for a 
node v requires the computations for v’s children to be 
done first. 
 Example: Given a file system, compute the disk space 
used by a directory. 
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Example: Computing Disk Space 
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Example: UNIX Directory Traversal 
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Example: Unix Directory Traversal 
22 

Preorder Postorder 



Computing Depth and Height 
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Depth 
• Depth of node v: number of ancestors of v. 
• Recursive definition:  

•  If v is the root, then depth of v is 0. 
• Otherwise, depth of v is 1 plus the depth of v’s parent. 
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Algorithm depth 
Algorithm depth( T, v ) { 
   if ( isRoot( v ) ) 
      return 0; 
   return ( 1 + depth( T, parent( v ) ) ); 
} 
Running time = dv + 1 
Worst case: O(n) 
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Computing Height of a Tree – Method 1 
• The height of a tree = maximum depth of any node 
Algorithm Tree_Height( T ) { 

   h = 0; 
   for every node v in T 
      if( isExternal( v ) ) 
         h = max( h, depth( T, v ) ); 
} 

 
Running time: O(n) + Σv(dv + 1) for all external nodes v 
Σv dv = O(n2) in the worst case (C-8.31) ⇒ not efficient 
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Height 

• Height of a node 
•  length of the longest path from that node to a leaf 
•  all leaves are at height 0 

• The height of a tree  = the height of the root 
    = maximum depth of any node 
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Recursive Definition of Height of a Node 
• The height of a node v in a tree T is defined as follows: 

•  If v is a leaf node, then height of v is 0. 
• Otherwise, height of v is 1 plus the maximum height of a 

child of v. 
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Algorithm height 
Algorithm height( T, v ) { 
   if ( isExternal( v ) ) 
      return 0; 
   h = 0; 
   for every child w of v 
      h = max( h, height( T, w ) ); 
   return( 1 + h ); 
} 

•  Running time: Σu(cu + 1) for every node u in sub-tree rooted at v 
•  We visit each node exactly once. 
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Computing Height of a Tree – Method 2 
• Height of the tree:  
H = height( T, root ); 

• Running time: Σu(cu + 1) for every node u in the tree 

• We visit each node exactly once. 

• O(n) 
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Next lecture … 
• Binary Trees (8.2) 
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