TREES

EECS 2011

Trees

- Linear access time of linked lists is prohibitive

- Does there exist any simple data structure for which the

running time of most operations (search, insert, delete)
is O(log N)?

- Trees
- Basic concepts
- Tree traversal
- Binary trees

- Binary search trees
- AVL trees

General Trees (8.1)

- In computer science, a
tree is an abstract model
of a hierarchical structure

- A tree consists of nodes
with a parent-child relation
- Applications:
- Organization charts
- File systems

- Programming
environments

Example: File Systems

fusr*
mark* alex* bill*
/\
book* course* junk julnk work* course*
T
chl.r ch2r ch3r cop§530* cop3|212*
fall98* spr99* sum99* fall98* fall99*

| | e T

syl.r syLr syl.r grades progl.r prog2.r prog2r progl.r grades
Figure 4.5 unix directory

Example: Expression Trees

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d * e + f) * g)

- Leaves are operands (constants or variables)
- The internal nodes contain operators

Recursive Definition

- A tree is a collection of nodes.
- The collection can be empty.

- Otherwise, a tree consists of a distinguished node r
(the root), and zero or more nonempty subtrees T,
T,, ..., T, each of whose roots is connected by a
directed edge from r.

Figure 4.1 Generic tree

A
Applying the Recursive Definition

void operation (T) {
if (Tis notempty)
for every subtree T; of T
operation(T;)

Figure 4.1 Generic tree

T
Tree Terminology

- Root: node without parent (A) - Subtree: tree consisting of a

- Internal node: node with at least one ~ Nnode and its descendants
child (A, B, C, F)

- External node (a.k.a. leaf): node
without children (E, I, J, K, G, H, D)

- Ancestors of a node: parent,

grandparent, grand-grandparent,
etc.

- Depth of a node: number of
ancestors

- Height of a tree: maximum depth of
any node (3 in the example)

- Descendant of a node: child,
grandchild, grand-grandchild, etc.

subtree

I .
Tree Terminology (2)

- Siblings: nodes having the same parent
- Path: a sequence of edges
- Length of path: number of edges on the path

(A
€

& &) (5)
D)

®F &
@ (15 Oy &
® @

Figure 4.2 A tree

e
Tree Terminology (3)

- Height of a node
- length of the longest path from that node to a leaf
- all leaves are at height 0

- The height of a tree = the height of the root
= maximum depth of any node

Figure 4.2 A tree

s
Tree ADT

- We use positions to abstract Generic methods:

nodes (position = node) - integer size()
« boolean isEmpty()

 Iterator iterator(): returns

- Accessor methods: an iterator of all elements
- position root() in the tree.
- position parent(p) Iterable positions(): returns

an iterable collection of all

- Iterable children
(p) positions of the tree.

- Integer numChildren(p)

_ * Additional update methods
. thods:
Query methods may be defined by data

= boolean !Slntemal(p) structures implementing the
= boolean isExternal(p) Tree ADT

= boolean isRoot(p)

© 2014 Goodrich, Tamassia,

Goldwasser Trees 12

Java Interface

Methods for a Tree interface:

1 /%% An interface for a tree where nodes can have an arbitrary number of children. x/
2 public interface Tree<E> extends Iterable<E> {
3 Position<E> root();
Position<E> parent(Position<E> p) throws lllegalArgumentException;
Iterable<Position<E>>> children(Position<E> p)

throws lllegalArgumentException;
int numChildren(Position<E> p) throws lllegalArgumentException;
boolean isInternal(Position<E> p) throws lllegalArgumentException;
9 boolean isExternal(Position<E> p) throws lllegalArgumentException;
10 boolean isRoot(Position<E> p) throws lllegal ArgumentException;
Il int size();
12 boolean isEmpty();
I3 lterator<E> iterator();
14 Iterable<Position<E>> positions();
15 }

0~ O K

Implementing Trees

- Arrays ?
- Linked structures (pointers) ?

Linked Structure for Trees (8.3.3)

- A node is represented by
an object storing

- Element r
- Parent node B
- Sequence of children nodes

s
Tree Traversal Algorithms (8.4)

- Preorder
- Visit v first
- Then visit the descendants of v

- Postorder
- Visit the descendants of v first
- Then visit v last

Figure 4.2 A tree

Preorder Traversal
- A tra_versal visits the nodes of a Algorithm preOrder(v)
tree in a systematic manner visit()
- In a preorder traversal, a node is _
visited before its descendants for each child w of v
- Application: print a structured preOrder (w)

document

An Example

ced1B!

fusertfcourses)

N

grades

homeworks!

prngramsq

a

/

17

cea !

prnjectsfw

/

by

b2

b 3

pr

pred | | pr

3

papers!

grades

dermoss

b el o

sellhigh

market

Postorder Traversal

- In a postorder traversal, a node Algorithm postOrder(v)
is visited after its descendants for each child w of v

- Application: compute space
used by files in a directory and postOrder (w)
its subdirectories VISit(v)

[homeworks/] [programs/]
1/\2 4 5 6

h1c.doc hinc.doc DDR.java Stocks.java Robot.java
3K 2K 10K 25K 20K

19

Applications

Either preorder traversal or postorder traversal can be
used when the order of computation is not important.

Example: printing the contents of a tree (in any order)

Preorder traversal is required when we must perform a
computation for each node before performing any
computations for its descendents.

Example: Printing the headings of chapters, sections, sub-
sections of a book.

Postorder traversal is needed when the computation for a
node]\c/ requires the computations for v’ s children to be
done first.

Example: Given a file system, compute the disk space
used by a directory.

20

Example: Computing Disk Space

A12 4k
fuseriticaursess
T
csl /Y csda s
1k
229K 4370k
arades| |homeworks' | [programss projectss | |drades
ake 1K 1K 1K 3K
//\ / \ a2k 4TETH
braet | [hewZ | (w3 | prt | (pr2 | (eS| |paperss dermog
|| 2k | |4k | |a7K| |an| (74K Tk Tk,
bin [| | sellhigh market
A8k 4736k

S
Example: UNIX Directory Traversal

fusr*
mark* alex* bill*
/\
book* course* junk julnk work* course*
T
chl.r ch2r ch3r cop§530* cop3|212*
fall98* spr99* sum99* fall98* fall99*

| | e T

syl.r syLr syl.r grades progl.r prog2.r prog2r progl.r grades
Figure 4.5 unix directory

Example: Unix Directory Traversal

Preorder Postorder
Jusr chl.r 3
mark ch2.r 2
book Ch3. r 4
chl.r book 10
ch2.r syl.r 1
ch3.r fal198 2
course syl.r 5
cop3530 spr99 6
fa1198 syl.r 2
syl.r sum99 3
spr99 cop3530 12
syl.r course 13
sum99 junk 6
syl.r mark 30
junks junk 8
alex alex 9
junk work 1
bill grades 3
work progl.r 4
course prog2.r 1
cop3212 fal198 9
fal198 prog2.r 2
grades progl.r 7
progl.r grades 9
prog2.r fal1199 19
fal199 cop3212 29
prog2.r course 30
progl.r bill 32

grades jusr 72

Computing Depth and Height

e
Depth

- Depth of node v: number of ancestors of v.
- Recursive definition:
- If vis the root, then depth of vis 0.
- Otherwise, depth of vis 1 plus the depth of v's parent.

®
B © © © o O
® O Q& © ® ®
® @

Figure 4.2 A tree

s
Algorithm depth

Algorithm depth(T, v) {
if (isRoot(v))
return O;
return (1 + depth(T, parent(v)));
}
Running time = d,, + 1
Worst case: O(n)

Figure 4.2 A tree

s
Computing Height of a Tree — Method 1

- The height of a tree = maximum depth of any node
Algorithm Tree Height(T) {
h =0;
for every node v in T
1f(isExternal(v))
h = max(h, depth(T, v))

Running time: O(n) + 2 (d, + 1) for all external nodes v
X d, = O(n?) in the worst case (C-8.31) = not efficient

R
Height

- Height of a node
- length of the longest path from that node to a leaf
- all leaves are at height 0

- The height of a tree = the height of the root
= maximum depth of any node

Figure 4.2 A tree

Recursive Definition of Height of a Node

- The height of a node v in a tree T is defined as follows:
- If v is a leaf node, then height of v is 0.

- Otherwise, height of v is 1 plus the maximum height of a
child of v.

®) © @ E (F) ©
CRONONGCEORT ®
® @

Figure 4.2 A tree

.
Algorithm height

Algorithm height(T, v) {
if (isExternal(v))
return O;
h =20;
for every child w of v
h = max(h, height(T, w))
return(1 + h) ;

- Running time: 2 (c, + 1) for every node u in sub-tree rooted at v
- We visit each node exactly once.

I
Computing Height of a Tree — Method 2

- Height of the tree:
H = height(T, root);

- Running time: £ (¢, + 1) for every node u in the tree

- We visit each node exactly once.

- O(n)

Next lecture ...

- Binary Trees (8.2)

