
TREES
EECS 2011

31 January 2020 1

Trees
•  Linear access time of linked lists is prohibitive

• Does there exist any simple data structure for which the
running time of most operations (search, insert, delete)
is O(log N)?

• Trees
• Basic concepts
• Tree traversal
• Binary trees
• Binary search trees
• AVL trees

2

General Trees (8.1)
•  In computer science, a

tree is an abstract model
of a hierarchical structure

•  A tree consists of nodes
with a parent-child relation

•  Applications:
•  Organization charts
•  File systems
•  Programming

environments

3

Computers”R”Us

Sales R&D Manufacturing

Laptops Desktops US International

Europe Asia Canada

Example: File Systems

4

Example: Expression Trees

•  Leaves are operands (constants or variables)
• The internal nodes contain operators

5

Recursive Definition
• A tree is a collection of nodes.

•  The collection can be empty.
•  Otherwise, a tree consists of a distinguished node r

(the root), and zero or more nonempty subtrees T1,
T2, . . . , Tk, each of whose roots is connected by a
directed edge from r.

6

Applying the Recursive Definition
void operation (T) {
 if (T is not empty)
 for every subtree Ti of T
 operation(Ti)

}

7

Trees 8

subtree

Tree Terminology
•  Root: node without parent (A)
•  Internal node: node with at least one

child (A, B, C, F)
•  External node (a.k.a. leaf): node

without children (E, I, J, K, G, H, D)
•  Ancestors of a node: parent,

grandparent, grand-grandparent,
etc.

•  Depth of a node: number of
ancestors

•  Height of a tree: maximum depth of
any node (3 in the example)

•  Descendant of a node: child,
grandchild, grand-grandchild, etc.

A

B D C

G H E F

I J K

o  Subtree: tree consisting of a
node and its descendants

Tree Terminology (2)
• Siblings: nodes having the same parent
• Path: a sequence of edges
•  Length of path: number of edges on the path

9

Tree Terminology (3)

• Height of a node
•  length of the longest path from that node to a leaf
•  all leaves are at height 0

• The height of a tree = the height of the root
 = maximum depth of any node

10

Trees 11

Tree ADT
•  We use positions to abstract

nodes (position ≡ node)

•  Accessor methods:
•  position root()
•  position parent(p)
•  Iterable children(p)
•  Integer numChildren(p)

• Query methods:
n  boolean isInternal(p)
n  boolean isExternal(p)
n  boolean isRoot(p)

•  Generic methods:
•  integer size()
•  boolean isEmpty()
•  Iterator iterator(): returns

an iterator of all elements
in the tree.

•  Iterable positions(): returns
an iterable collection of all
positions of the tree.

•  Additional update methods

may be defined by data
structures implementing the
Tree ADT

Java Interface
Methods for a Tree interface:

© 2014 Goodrich, Tamassia,
Goldwasser Trees 12

Implementing Trees
• Arrays ?
•  Linked structures (pointers) ?

13

Linked Structure for Trees (8.3.3)
•  A node is represented by

an object storing
•  Element
•  Parent node
•  Sequence of children nodes

Trees 14

∅

B

D A

C E

F

B

∅ ∅

A D F

∅

C

∅

E

Tree Traversal Algorithms (8.4)
• Preorder

•  Visit v first
•  Then visit the descendants of v

• Postorder
•  Visit the descendants of v first
•  Then visit v last

15

Preorder Traversal
•  A traversal visits the nodes of a

tree in a systematic manner
•  In a preorder traversal, a node is

visited before its descendants
•  Application: print a structured

document

16

Make Money Fast!

1. Motivations References 2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme 1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

 preOrder (w)

An Example

17

Postorder Traversal
•  In a postorder traversal, a node

is visited after its descendants
•  Application: compute space

used by files in a directory and
its subdirectories

18

Algorithm postOrder(v)
for each child w of v

 postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1K programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

Applications
• Either preorder traversal or postorder traversal can be

used when the order of computation is not important.
 Example: printing the contents of a tree (in any order)

• Preorder traversal is required when we must perform a
computation for each node before performing any
computations for its descendents.

 Example: Printing the headings of chapters, sections, sub-
sections of a book.

• Postorder traversal is needed when the computation for a
node v requires the computations for v’s children to be
done first.
 Example: Given a file system, compute the disk space
used by a directory.

19

Example: Computing Disk Space

20

Example: UNIX Directory Traversal

21

Example: Unix Directory Traversal
22

Preorder Postorder

Computing Depth and Height

23

Depth
• Depth of node v: number of ancestors of v.
• Recursive definition:

•  If v is the root, then depth of v is 0.
• Otherwise, depth of v is 1 plus the depth of v’s parent.

24

Algorithm depth
Algorithm depth(T, v) {
 if (isRoot(v))
 return 0;
 return (1 + depth(T, parent(v)));
}
Running time = dv + 1
Worst case: O(n)

25

Computing Height of a Tree – Method 1
• The height of a tree = maximum depth of any node
Algorithm Tree_Height(T) {

 h = 0;
 for every node v in T
 if(isExternal(v))
 h = max(h, depth(T, v));
}

Running time: O(n) + Σv(dv + 1) for all external nodes v
Σv dv = O(n2) in the worst case (C-8.31) ⇒ not efficient

26

Height

• Height of a node
•  length of the longest path from that node to a leaf
•  all leaves are at height 0

• The height of a tree = the height of the root
 = maximum depth of any node

27

Recursive Definition of Height of a Node
• The height of a node v in a tree T is defined as follows:

•  If v is a leaf node, then height of v is 0.
• Otherwise, height of v is 1 plus the maximum height of a

child of v.

28

Algorithm height
Algorithm height(T, v) {
 if (isExternal(v))
 return 0;
 h = 0;
 for every child w of v
 h = max(h, height(T, w));
 return(1 + h);
}

•  Running time: Σu(cu + 1) for every node u in sub-tree rooted at v
•  We visit each node exactly once.

29

Computing Height of a Tree – Method 2
• Height of the tree:
H = height(T, root);

• Running time: Σu(cu + 1) for every node u in the tree

• We visit each node exactly once.

• O(n)

30

Next lecture …
• Binary Trees (8.2)

31

