TREES

1

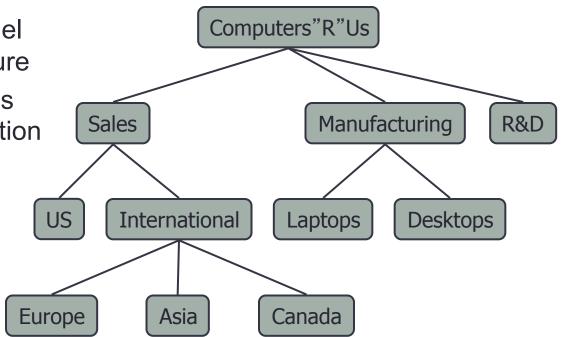
EECS 2011

Trees

- Linear access time of linked lists is prohibitive
 - Does there exist any simple data structure for which the running time of most operations (search, insert, delete) is O(log N)?
- Trees
 - Basic concepts
 - Tree traversal
 - Binary trees
 - Binary search trees
 - AVL trees

General Trees (8.1)

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Applications:
 - Organization charts
 - File systems
 - Programming environments



Example: File Systems

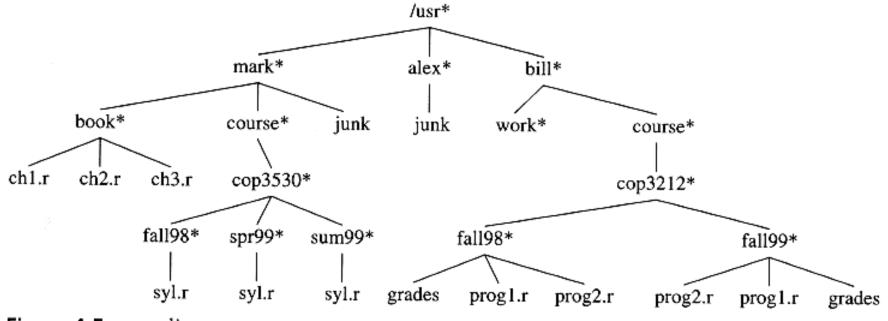


Figure 4.5 UNIX directory

Example: Expression Trees

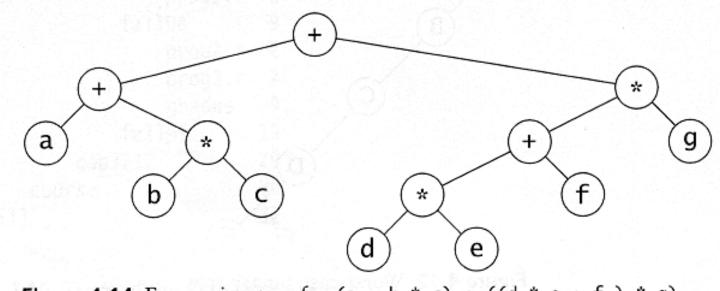


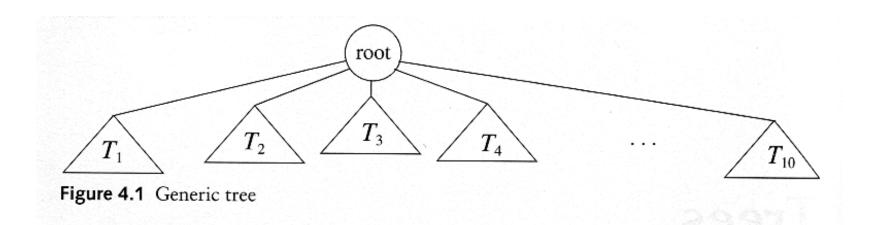
Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

- Leaves are operands (constants or variables)
- The internal nodes contain operators

Recursive Definition

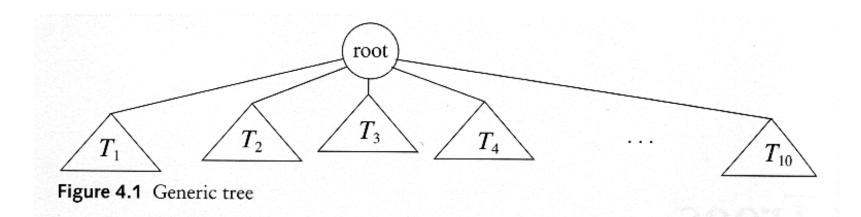
- A tree is a collection of nodes.
 - The collection can be empty.

Otherwise, a tree consists of a distinguished node *r* (the *root*), and zero or more nonempty *subtrees* T₁, T₂, ..., T_k, each of whose roots is connected by a directed *edge* from *r*.



Applying the Recursive Definition

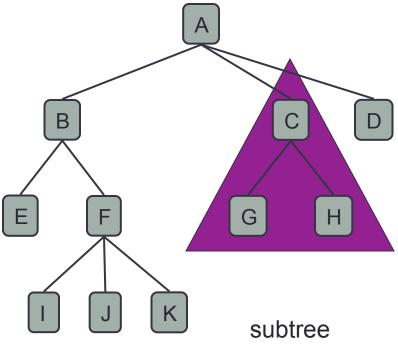
```
void operation ( T ) {
    if ( T is not empty )
      for every subtree T<sub>i</sub> of T
      operation( T<sub>i</sub> )
```



Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3 in the example)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

Subtree: tree consisting of a node and its descendants

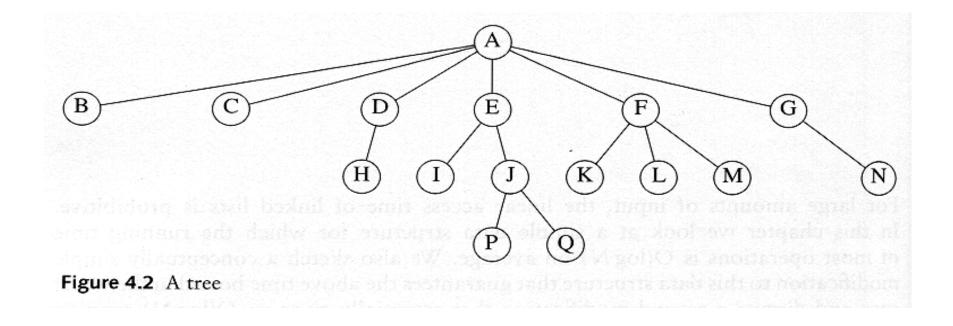


8

Trees

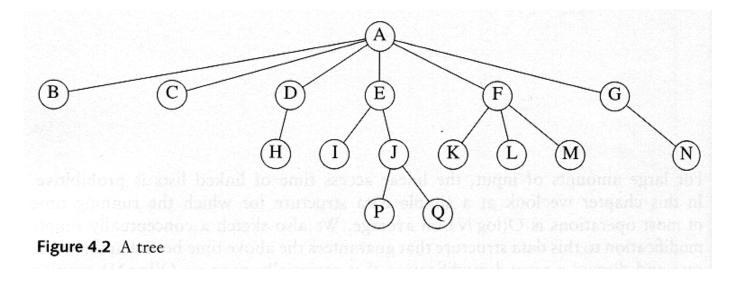
Tree Terminology (2)

- Siblings: nodes having the same parent
- Path: a sequence of edges
- Length of path: number of edges on the path



Tree Terminology (3)

- Height of a node
 - length of the longest path from that node to a leaf
 - all leaves are at height 0
- The height of a tree
- = the height of the root= maximum depth of any node



Tree ADT

- We use positions to abstract nodes (position = node)
- Accessor methods:
 - position root()
 - position parent(p)
 - Iterable children(p)
 - Integer numChildren(p)
- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)

- Generic methods:
 - integer size()
 - boolean isEmpty()
 - Iterator iterator(): returns an iterator of all elements in the tree.
 - Iterable positions(): returns an iterable collection of all positions of the tree.
- Additional update methods may be defined by data structures implementing the Tree ADT

Java Interface

Methods for a Tree interface:

- 1 /** An interface for a tree where nodes can have an arbitrary number of children. */
- 2 **public interface** Tree<E> **extends** Iterable<E> {
- 3 Position<E> root();
- 4 Position<E> parent(Position<E> p) **throws** IllegalArgumentException;

```
5 Iterable<Position<E>> children(Position<E> p)
```

- throws IllegalArgumentException;
- 7 **int** numChildren(Position<E> p) **throws** IllegalArgumentException;
- 8 **boolean** isInternal(Position<E> p) **throws** IllegalArgumentException;
- 9 boolean isExternal(Position<E> p) throws IllegalArgumentException;
- 10 **boolean** isRoot(Position<E> p) **throws** IllegalArgumentException;
- 11 **int** size();
- 12 **boolean** isEmpty();
- 13 Iterator<E> iterator();
- 14 Iterable<Position<E>> positions();

15 }

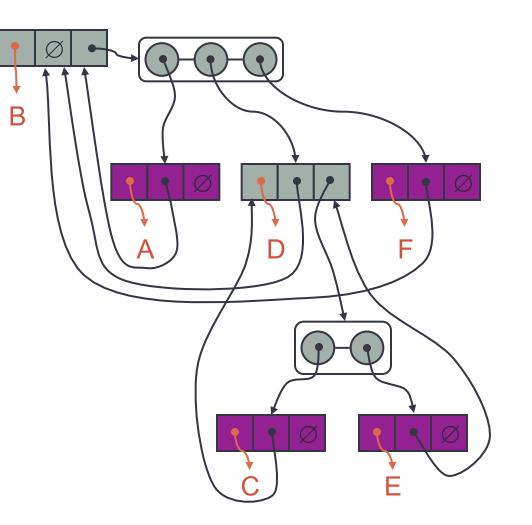
6

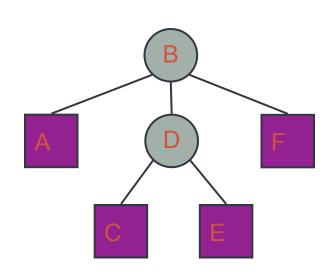
Implementing Trees

- Arrays ?
- Linked structures (pointers) ?

Linked Structure for Trees (8.3.3)

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes





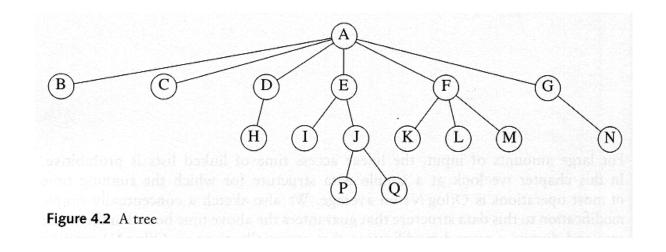
Tree Traversal Algorithms (8.4)

Preorder

- Visit *v* first
- Then visit the descendants of v

Postorder

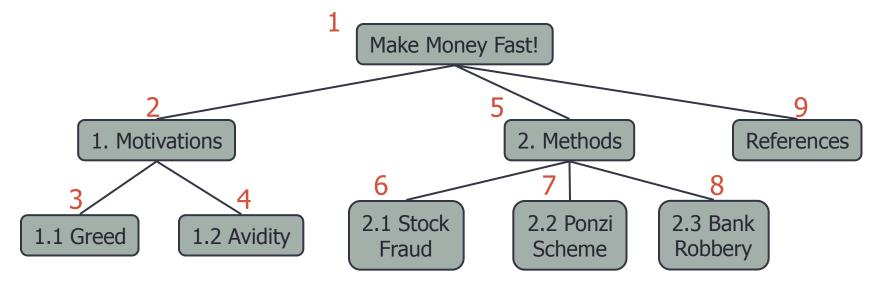
- Visit the descendants of v first
- Then visit v last



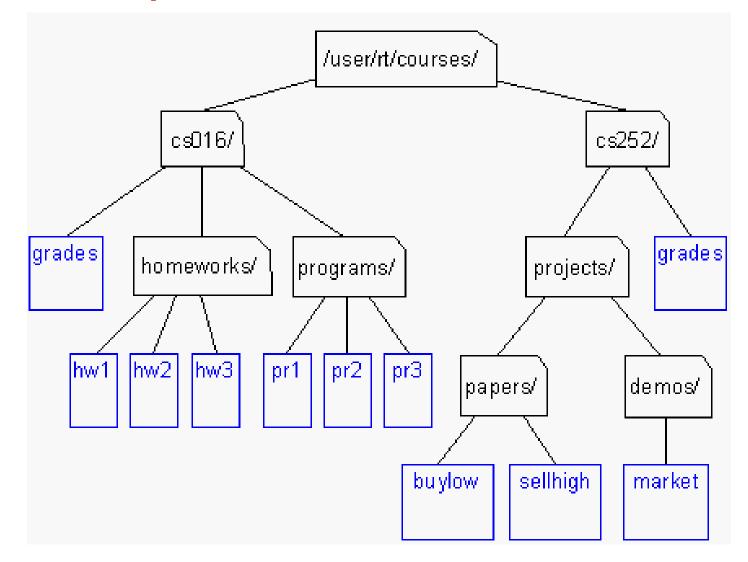
Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm *preOrder(v) visit(v)* for each child *w* of *v preOrder (w)*



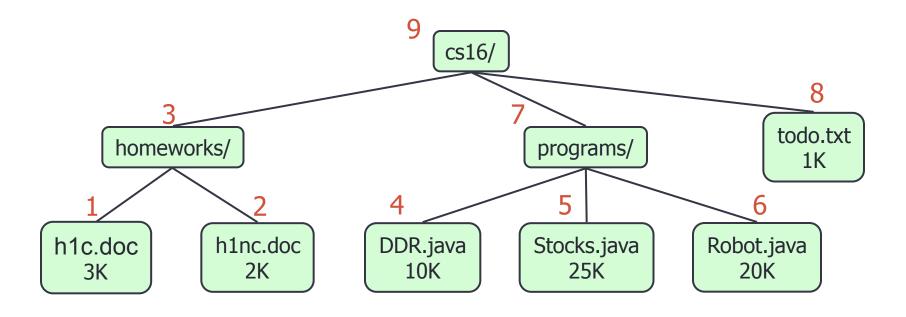
An Example



Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm *postOrder*(*v*) for each child w of v *postOrder* (*w*) visit(v)

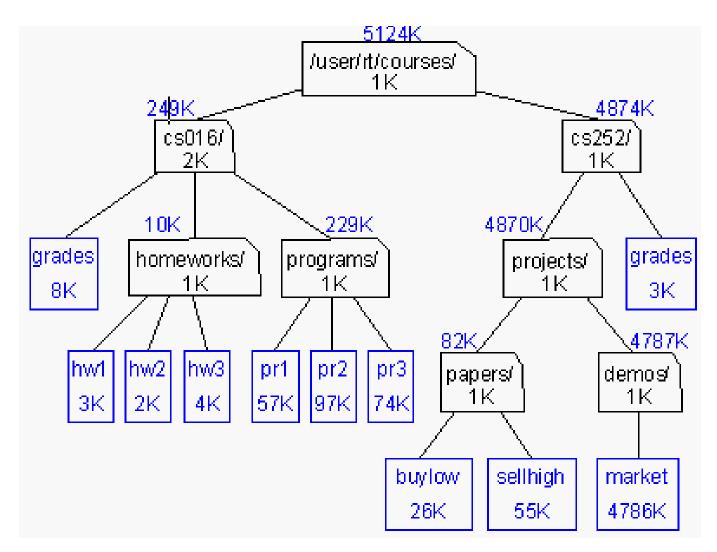


Applications

- Either preorder traversal or postorder traversal can be used when the order of computation is not important.
 Example: printing the contents of a tree (in any order)
- Preorder traversal is required when we must perform a computation for each node before performing any computations for its descendents.
 - Example: Printing the headings of chapters, sections, subsections of a book.
- Postorder traversal is needed when the computation for a node v requires the computations for v's children to be done first.

Example: Given a file system, compute the disk space used by a directory.

Example: Computing Disk Space



Example: UNIX Directory Traversal

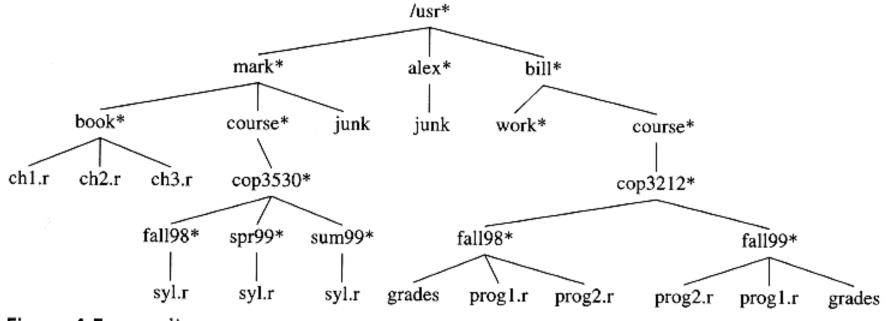


Figure 4.5 UNIX directory

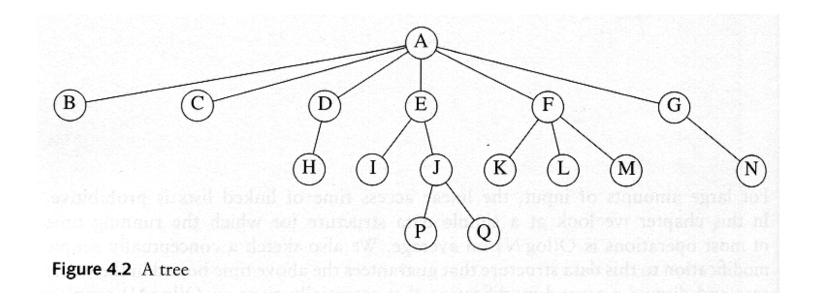
Example: Unix Directory Traversal Preorder Postorder

/usr	ch1.r	3
mark	ch2.r	2
book	ch3.r	4
ch1.r	book	10
ch2.r	syl.r	1
ch3.r	fa1198	2
course	syl.r	1 2 5 6 2 3
cop3530	spr99	6
fa1198	syl.r	2
syl.r	sum99	3
spr99	сор3530	12
syl.r	course	13
sum99	junk	6
syl.r	mark	30
junk•	junk	8
alex	alex	8 9 1
junk	work	1
bill	grades	
work	prog1.	r 4
course	prog2.	r 1
cop3212	fa1198	9
fa1198	prog2.	r 2
grades	prog1.	r 7
progl.r	grades	9
prog2.r	fa1199	19
fa1199	cop3212	2 9
prog2.r	course	30
progl.r	bill	32
grades	/usr	72

Computing Depth and Height

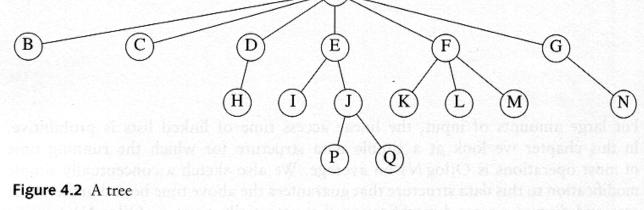
Depth

- *Depth* of node *v*: number of ancestors of *v*.
- Recursive definition:
 - If *v* is the root, then depth of *v* is 0.
 - Otherwise, depth of v is 1 plus the depth of v's parent.



Algorithm *depth*

```
Algorithm depth( T, v ) {
    if ( isRoot( v ) )
        return 0;
    return ( 1 + depth( T, parent( v ) ) );
}
Running time = d<sub>v</sub> + 1
Worst case: O(n)
```



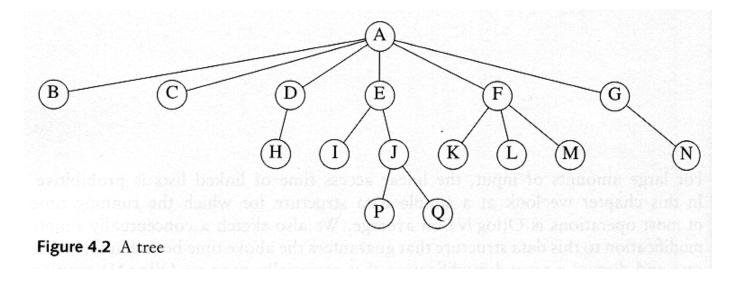
Computing Height of a Tree – Method 1

• The height of a tree = maximum depth of any node Algorithm Tree_Height(T) { h = 0; for every node v in T if(isExternal(v)) h = max(h, depth(T, v)); }

Running time: $O(n) + \Sigma_v(d_v + 1)$ for all external nodes v $\Sigma_v d_v = O(n^2)$ in the worst case (C-8.31) \Rightarrow not efficient

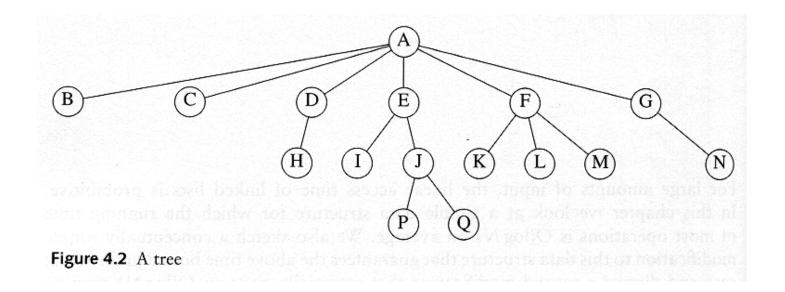
Height

- Height of a node
 - length of the longest path from that node to a leaf
 - all leaves are at height 0
- The height of a tree
- = the height of the root= maximum depth of any node



Recursive Definition of Height of a Node

- The height of a node v in a tree T is defined as follows:
 - If v is a leaf node, then height of v is 0.
 - Otherwise, height of v is 1 plus the maximum height of a child of v.



Algorithm *height*

```
Algorithm height( T, v ) {
    if ( isExternal( v ) )
        return 0;
    h = 0;
    for every child w of v
        h = max( h, height( T, w ) );
    return( 1 + h );
}
```

- Running time: $\sum_{u} (c_u + 1)$ for every node *u* in sub-tree rooted at *v*
- We visit each node exactly once.

Computing Height of a Tree – Method 2

• Height of the tree:

H = height(T, root);

- Running time: $\Sigma_u(c_u + 1)$ for every node *u* in the tree
- We visit each node exactly once.

• O(n)

Next lecture ...

• Binary Trees (8.2)