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Graphs
• A graph is a pair (V, E), where
• V is a set of nodes, called vertices
• E is a collection of pairs of vertices, called edges
• Vertices and edges are objects and store elements

• Example:
• A vertex represents an airport and stores the three-letter airport code
• An edge represents a flight route between two airports and stores the 

mileage of the route

ORD PVD
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Edge Types
• Directed edge
• ordered pair of vertices (u,v)
• first vertex u is the origin
• second vertex v is the destination
• e.g., a flight

• Undirected edge
• unordered pair of vertices (u,v)
• e.g., a flight route

• Directed graph (digraph)
• all the edges are directed
• e.g., flight network

• Undirected graph
• all the edges are undirected
• e.g., route network

ORD PVDflight
AA 1206

ORD PVD849
miles
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Applications
• Electronic circuits
• Printed circuit board
• Integrated circuit

• Transportation networks
• Highway network
• Flight network

• Computer networks
• Local area network
• Internet
• Web

• Databases
• Entity-relationship diagram



Graphs 5

Terminology
• End vertices (or endpoints) of 

an edge
• U and V are the endpoints of a

• Edges incident on a vertex
• a, d, and b are incident on V

• Adjacent vertices
• U and V are adjacent

• Degree of a vertex
• X has degree 5 

• Parallel edges
• h and i are parallel edges

• Self-loop
• j is a self-loop

XU

V

W

Z

Y

a

c

b

e
d

f

g

h

i

j
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Terminology: Directed Graphs

For directed graphs:
• Origin of an edge 
• Destination of an edge
• Outgoing edge
• Incoming edge
• Out-degree of vertex v: 

number of outgoing edges  of 
v

• In-degree of vertex v: number 
of incoming edges of v

A B

C D
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P1

Paths
• Path
• sequence of alternating vertices and 

edges 
• begins with a vertex
• ends with a vertex
• each edge is preceded and followed 

by its endpoints
• Path length
• the total number of edges on the 

path
• Simple path
• path such that all vertices are 

distinct (except that the first and last 
could be the same)

• Examples
• P1=(V,b,X,h,Z) is a simple path
• P2=(U,c,W,e,X,g,Y,f,W,d,V) is a path 

that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2
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Cycles
• Cycle
• circular sequence of alternating 

vertices and edges 
• each edge is preceded and 

followed by its endpoints
• Simple cycle
• cycle such that all its vertices are 

distinct (except the first and the 
last)

• Examples
• C1=(V,b,X,g,Y,f,W,c,U,a,V) is a 

simple cycle
• C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is 

a cycle that is not simple
• A directed graph is acyclic if it 

has no cycles Þ called DAG 
(directed acyclic graph)

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2
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Properties of Undirected Graphs
Notation

V number of 
vertices

E number of edges
deg(v) degree of vertex v

Property 1
Sv deg(v) = 2E
Proof: each edge is 

counted twice
Property 2

In an undirected graph 
with no loops
E £ V (V - 1)/2

Proof: each vertex has 
degree at most (V - 1)

What is the bound for a 
directed graph?

Example
¡V = 4
¡E = 6
¡deg(v) = 3
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Connectivity - Undirected Graphs

connected not connected

• An undirected graph is connected if there is a path from 
every vertex to every other vertex.
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Connectivity - Directed Graphs
• A directed graph is called strongly connected if there is a 

path from every vertex to every other vertex.
• If a directed graph is not strongly connected, but the 

corresponding undirected graph is connected, then the 
directed graph is said to be weakly connected.
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GRAPH ADT AND DATA 
STRUCTURES
EECS 2011
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Vertices and Edges
• A graph is a collection of vertices and edges. 
• We model the abstraction as a combination of three 
data types: Vertex, Edge, and Graph. 

• A vertex is a lightweight object that stores an 
arbitrary element provided by the user (e.g., an 
airport code)
• We assume it supports a method, element(), to retrieve the stored 

element. 

• An edge stores an associated object (e.g., a flight 
number, travel distance, cost), retrieved with the 
element( ) method. 



Graph ADT
Graphs 14
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Representation of Graphs
• Two popular computer representations of a graph:  

Both represent the vertex set and the edge set, but in 
different ways.

1. Adjacency Matrices
Use a 2D matrix to represent the graph

2. Adjacency Lists
Use a set of linked lists, one list per vertex



16

Adjacency Matrix Representation
• 2D array of size n x n where n is the number of vertices in 

the graph
• A[i][j]=1 if there is an edge connecting vertices i and j; 

otherwise, A[i][j]=0
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Adjacency Matrix Example

2

4

3

5

1

7
6

9

8

0 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 1 0 1

2 0 1 0 0 1 0 0 0 1 0

3 0 1 0 0 1 1 0 0 0 0

4 0 0 1 1 0 0 0 0 0 0

5 0 0 0 1 0 0 1 0 0 0

6 0 0 0 0 0 1 0 1 0 0

7 0 1 0 0 0 0 1 0 0 0

8 1 0 1 0 0 0 0 0 0 1

9 0 1 0 0 0 0 0 0 1 0
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Adjacency Matrix Structure
• Augmented vertex objects
• Integer key (index) 

associated with vertex

• 2D-array adjacency array
• Reference to edge object 

for adjacent vertices
• Null for non-adjacent 

vertices

• The “old fashioned”
version just has 0 for no 
edge and 1 for edge
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Adjacency Matrices: Analysis
• The storage requirement is Q(V2). 

• not efficient if the graph has few edges. 
• appropriate if the graph is dense; that is E= Q(V2)

• If the graph is undirected, the matrix is symmetric.  
There exist methods to store a symmetric matrix 
using only half of the space. 
• Note: the space requirement is still Q(V2). 

• We can detect in O(1) time whether two vertices 
are connected.
• areAdjacent (v, w): returns true if v and w are adjacent, and false 

otherwise.
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Adjacency Lists

• If the graph is sparse, a better solution is an adjacency list 
representation.

• For each vertex v in the graph, we keep a list of vertices 
adjacent to v.
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Adjacency List Example

2

4

3

5

1

7
6

9

8

0 0
1
2
3
4
5
6
7
8
9

2 3 7 9

8

1 4 8

1 4 5

2 3
3 6

5 7

1 6

0 2 9

1 8
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Adjacency Lists: Analysis

• Testing whether u is adjacency to v takes time O(deg(v)) 
or O(deg(u)).

a b

c

d e

b

b

c

c

c

d

a e

a d e

a e

d

Space =
Q (V + Sv deg(v)) = Q (V + E)
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Adjacency List Structure
• Incidence sequence 

for each vertex
• sequence of 

references to edge 
objects of incident 
edges

• Augmented edge 
objects
• references to 

associated positions 
in incidence 
sequences of end 
vertices



Adjacency List Structure Implementation
• Incidence sequence for 
each vertex
• sequence of references to 

edge objects of incident 
edges

• Augmented edge 
objects
• references to associated 

positions in incidence 
sequences of end vertices

24
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Adjacency Lists vs. Adjacency Matrices
• An adjacency list takes Q(V + E).
• If E = O(V2) (dense graph), both use Q(V2) space.
• If E = O(V) (sparse graph), adjacency lists are more space efficient.

• Adjacency lists
• More compact than adjacency matrices if graph has few edges
• Requires more time to find if an edge exists

• Adjacency matrices
• Always require Q(V2) space

• This can waste lots of space if the number of edges is small 
• Can quickly find if an edge exists



Homework
• Prove the big-Oh running time of the graph 
methods shown in the next slide.

• incidentEdges(v): returns the edges incident on v. 
• areAdjacent (v, w): returns true if v and w are adjacent, 

and false otherwise.

26
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Running Time of Graph Methods
• n vertices, m edges
• no parallel edges
• no self-loops
• bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n
areAdjacent (v, w) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1
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BREADTH FIRST 
SEARCH
EECS 2011
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Graph Traversal (14.3)
• Application example

• Given a graph representation and a vertex s in the 
graph, find all paths from s to the other vertices.

• Two common graph traversal algorithms:
• Breadth-First Search (BFS)

• Idea is similar to level-order traversal for trees.
• Implementation uses a queue.
• Gives shortest path from a vertex to another.

• Depth-First Search (DFS)
• Idea is similar to preorder traversal for trees (visit a node then 

visit its children recursively).
• Implementation uses a stack (implicitly via recursion).



30

BFS and Shortest Path Problem
• Given any source vertex s, BFS visits the other vertices at 

increasing distances away from s.  In doing so, BFS 
discovers shortest paths from s to the other vertices.

• What do we mean by “distance”?  The number of edges 
on a path from s (unweighted graph).

2

4

3

5

1

7
6

9

8

0
Consider s=vertex 1

Nodes at distance 1?
2, 3, 7, 91

1

1

1
2

22

2

s

Example

Nodes at distance 2?
8, 6, 5, 4

Nodes at distance 3?
0
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How Does BSF Work?
• Similarly to level-order traversal for trees.

• The BFS code we will discuss works for both 
directed and undirected graphs.
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Skeleton of BFS Algorithm 

output v;
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BFS Algorithm

flag[ ]: visited or not

output v;
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BFS Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

F

F

F

F

F

F

F

F

Q = {    }

Initialize “visited”
table (all False)

Initialize Q to be empty



35

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Q = {  2   }

Flag that 2 has 
been visited

Place source 2 on the queue
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

T

T

F

T

F

F

F

T

F

Q = {2} →  {  8, 1, 4 }

Mark neighbors
as visited 1, 4, 8

Dequeue 2.  
Place all unvisited neighbors of 2 on the queue

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

T

F

F

F

T

T

Q = {  8, 1, 4 } → { 1, 4, 0, 9 } 

Mark newly visited
neighbors 0, 9

Dequeue 8.  
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = {  1, 4, 0, 9 } → { 4, 0, 9, 3, 7 } 

Mark newly visited
neighbors 3, 7

Dequeue 1.  
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 } 

Dequeue 4.  
-- 4 has no unvisited neighbors!

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 } 

Dequeue 0.  
-- 0 has no unvisited neighbors!

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 } 

Dequeue 9.  
-- 9 has no unvisited neighbors!

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 } 

Dequeue 3.  
-- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 } 

Dequeue 7.  
-- place neighbor 6 on the queue

Neighbors

Mark new visited
Vertex 6
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 } 

Dequeue 5.  
-- no unvisited neighbors of 5

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 6 } → {  } 

Dequeue 6.  
-- no unvisited neighbors of 6

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = {  } STOP!!!   Q is empty!!!

What did we discover?

Look at “visited” tables.

There exists a path from source
vertex 2 to all vertices in the graph
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Running Time of BFS
• Assume adjacency list
• V = number of vertices;   E = number of edges

Each vertex will enter Q at
most once. dequeue is O(1).

The for loop takes time 
proportional to deg(v).
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Running Time of BFS (2)
• Recall: Given a graph with E edges

• The total running time of the while loop is:

• This is the sum over all the iterations of the while loop!

• Homework: What is the running time of BFS if we use an 
adjacency matrix?

O( Σvertex v  (1 + deg(v)) ) = O(V+E)

Σvertex v  deg(v) = 2E
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BFS and Unconnected Graphs

D
E

A
C

F
B

G
K

H

L
N

M
O R

QP

s

A graph may not be connected 
(strongly connected) Þ enhance
the above BFS code to 
accommodate this case.

A graph with 3 components
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Recall the BFS Algorithm …

output ( v );
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Enhanced BFS Algorithm
• We can re-use the previous 

BFS(s) method to compute the 
connected components of a 
graph G.

BFSearch( G )  {
i = 1;     // component number
for every vertex v

flag[v] = false;
for every vertex v

if ( flag[v] == false ) {
print ( “Component ” +  i++ );
BFS( v );

}
}

K

H

A
C

B

N

M

A graph with 3 components

L
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Applications of BFS
What can we do with the BFS code we just discussed?
• Is there a path from source s to a vertex v?
• Check flag[v].

• Is an undirected graph connected?
• Scan array flag[ ].
• If there exists flag[u] = false then …

• To output the contents (e.g., the vertices) of a connected 
graph
• What if the graph is not connected? Slide 24

• To output the contents  of a strongly connected graph
• What if the graph is not connected or weakly connected? Slide 24
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Other Applications of BFS
• To find the shortest path from a vertex s to a vertex v in an 

unweighted graph

• To find the length of such a path

• To find out if a graph contains cycles

• To find the connected components of a graph that is not 
connected

• To construct a BSF tree/forest from a graph
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Applications of BFS
• To find the shortest path from a vertex s to a vertex v in an 

unweighted graph

• To find the length of such a path

• To find out if a strongly connected directed graph contains 
cycles

• To find out if an undirected graph contains cycles

• To construct a BSF tree/forest from a graph

55



FINDING SHORTEST PATHS 
USING BFS
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Finding Shortest Paths
• The BFS code we have seen 
• find outs if there exists a path from a vertex s to a vertex v 
• prints the vertices of a graph (connected/strongly connected).

• What if we want to find 
• the shortest path from s to a vertex v (or to every other vertex)?
• the length of the shortest path from s to a vertex v?

• In addition to array flag[ ], use an array named prev[ ], one 
element per vertex.
• prev[w] = v means that vertex w was visited right after v

57
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

prev[ ] now can be traced backward
to report the path!

8

2

-

1

2

3

7

1

2

8

prev[ ]



BFS and Finding Shortest Path
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initialize 
all pred[v] to -1

record where you 
came from

already got shortest path from s to v
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table 
(T/F)

F

F

F

F

F

F

F

F

F

F

Q = {    }

Initialize visited
table (all false)

Initialize prev[ ] to -1
Initialize Q to be empty

-

-

-

-

-

-

-

-

-

-

prev[ ]
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Q = {  2   }

Flag that 2 has 
been visited.

Place source 2 on the queue.

-

-

-

-

-

-

-

-

-

-

prev
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

T

T

F

T

F

F

F

T

F

Q = {2} →  {  8, 1, 4 }

Mark neighbors
as visited.

Record in prev
that we came from 
2.

Dequeue 2.  
Place all unvisited neighbors of 2 on the queue

Neighbors

-

2

-

-

2

-

-

-

2

-

prev
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

T

F

F

F

T

T

Q = {  8, 1, 4 } → { 1, 4, 0, 9 } 
Mark new visited
Neighbors.

Record in prev
that we came 
from 8.

Dequeue 8.  
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

8

2

-

-

2

-

-

-

2

8

prev
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7
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Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = {  1, 4, 0, 9 } → { 4, 0, 9, 3, 7 } 

Mark new visited
Neighbors.

Record in prev
that we came 
from 1.

Dequeue 1.  
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

8

2

-

1

2

-

-

1

2

8

prev
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Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 } 

Dequeue 4.  
-- 4 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

prev
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Adjacency List

source
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2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 } 

Dequeue 0.  
-- 0 has no unvisited neighbors!

Neighbors 8

2

-

1

2

-

-

1

2

8

prev
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7
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9
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Adjacency List

source

0
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2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 } 

Dequeue 9.  
-- 9 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

prev
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2

4
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1

7
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0

Adjacency List

source

0

1

2

3

4

5

6

7
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BFS Finished
72

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = {  } STOP!!!   Q is empty!!!
prev[ ] now can be traced backward
to report the path!

8

2

-

1

2

3

7

1

2

8

prev[ ]



73

Finding the Shortest Path
• To print the shortest path from s to a vertex u, 
start with prev[u] and backtrack until reaching the 
source s (path reporting).
• Running time of backtracking = ?



Example of Path Reporting
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Path Reporting
• Given a vertex w, report the shortest path from s to w

currentV = w;
while (prev[currentV] ¹ –1) {

output currentV;  // or add to a list
currentV = prev[currentV];

}
output s; // or add to a list

• The above code prints the path in reverse order.
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Path Reporting (2)
• To output the path in the right order,
• Print the above list in reverse order.
• Use a stack instead of a list.

currentV = w;
while ( prev[currentV] ¹ –1 ) 

S.push( currentV );
currentV = prev[currentV];

}
while ( !S.isEmpty() )

print( S.pop() );
print( s );



Path Reporting (3)
• To output the path in the right order,
• Print the list in reverse order.
• Use a stack instead of a list.
• Use a recursive method (implicit use of a stack).

printPath (w) {
if (prev[w] ¹ –1) 

printPath (prev[w]);
output w;

}
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Finding Shortest Path Length
• To find the length of the shortest path from s to u, start 

with prev[u], backtrack and increment a counter until 
reaching the source s.
• Running time of backtracking = ?

• Following is a faster way to find the length of the shortest 
path from s to u (at the cost of using more space)
• Allocate an array d[ ], one element per vertex.
• When BSF algorithm ends, d[u] records the length of the 

shortest path from s to u.
• Running time of finding path length = ?
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Recording the Shortest Distance

79

d[v] = ¥;

d[w] = d[v] + 1;

d[s] = 0;

d[v] stores shortest 
distance from s to v



FINDING CYCLES

80



Finding Cycles in Undirected Graphs
• To detect/find cycles in an undirected graph, we need to 

classify the edges into 3 categories during program 
execution: 
• unexplored edge: never visited.  
• discovery edge: visited for the very first time.
• cross edge: edge that forms a cycle.

• When the BFS algorithm terminates, the discovery edges 
form a spanning tree.

• If there exists a cross edge, the undirected graph contains 
a cycle.
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BFS Algorithm (in textbook)

Breadth-First Search 82

• The algorithm uses a 
mechanism for setting and 
getting “labels” of vertices 
and edges

Algorithm BFS(G, s)
L0¬ new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ¬ 0
while ¬Li.isEmpty()

Li +1¬ new empty sequence
for all v Î Li.elements() 

for all e Î G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ¬ opposite(v,e)
if  getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ¬ i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges 

and partition of the 
vertices  of G 

for all u Î G.vertices()
setLabel(u, UNEXPLORED)

for all e Î G.edges()
setLabel(e, UNEXPLORED)

for all v Î G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)



Example

Breadth-First Search 83
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Example (2)
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Example (3)
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Depth First Search (DFS)
• DFS is another popular graph search strategy

• Idea is similar to pre-order traversal (visit node, then 
visit children recursively)

• DFS will continue to visit neighbors in a recursive 
pattern
• Whenever we visit v from u, we recursively visit all 
unvisited neighbors of v.  Then we backtrack (return) to 
u.
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DFS Traversal Example
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DFS Algorithm Idea
• Similar to BFS algorithm, except that we use a stack 
instead of a queue for backtracking.

• In practice, we use recursion instead of an explicit stack.
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BFS Algorithm

T = empty stack;

T.push( s );

v = T.pop();

T.push( w );



DFS Algorithm 
91

Flag all vertices as not
visited

Flag v as visited; print v;

For unvisited neighbors,
call RDFS(w) recursively

We can also record the paths using prev[ ].
Where do we insert the code for prev[ ]?

print v;



Example
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Example Finished
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Time Complexity of DFS

• We never visited a vertex more than once.

• We had to examine the adjacency lists of all vertices.
• Σvertex v degree(v) = 2E

• So, the running time of DFS is proportional to the number 
of edges and number of vertices (same as BFS)
• O(V + E)

• What is the running time of DFS if we use an adjacency 
matrix?
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Enhanced DFS Algorithm

• What if a graph is not 
connected (strongly 
connected)?
• Use an enhanced version of 

DFS, which is similar to the 
enhanced BFS algorithm.

DFSearch( G )  {
i = 1;     // component number
for every vertex v

flag[v] = false;
for every vertex v

if ( flag[v] == false ) {
print ( “Component ” +  i++ );
RDFS( v );

}
}
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Applications of DFS
• Is there a path from source s to a vertex v?
• Is an undirected graph connected?
• To output the contents of a graph
• To find the connected components of a graph
• To find out if a graph contains cycles and report 
cycles.

• To construct a DSF tree/forest from a graph
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Applications of DFS
• Is there a path from source s to a vertex v?
• Check array flag[ ]

• Is an undirected graph connected?
• Check array flag[ ]

• To output the contents (e.g., the vertices) of a graph
• Call RDFS( ) if graph is connected
• Call DFSearch( ) if the “connected” property is not known

• To find the connected components of a graph
• Call DFSearch( ) 

• To find out if a graph contains cycles and report cycles.
• To construct a DSF tree/forest from a graph
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DFS Path Tracking
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Finding Cycles Using DFS
• Similar to using BFS.

• For undirected graphs, classify the edges into 3 
categories during program execution: unvisited
edge, discovery edge, and back edge (equivalent 
to cross edge in BFS).
• If there exists a back edge, the undirected graph 

contains a cycle.
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DFS Algorithm
q The algorithm uses a mechanism 

for setting and getting “labels”
of vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e Î G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ¬ opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u Î G.vertices()
setLabel(u, UNEXPLORED)

for all e Î G.edges()
setLabel(e, UNEXPLORED)

for all v Î G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)



© 2010 Goodrich, Tamassia Depth-First Search 120

Example
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Example (cont.)
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Applications – DFS vs. BFS
• What can BFS do and DFS can’t?
• Finding shortest paths (in unweighted graphs)

• What can DFS do and BFS can’t?
• Finding out if a connected undirected graph is biconnected

• A connected undirected graph is biconnected if there are no 
vertices whose removal disconnects  the rest of the graph.

• Application in computer networks: ensuring that a network is still 
connected when a router/link fails.
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A graph that is not biconnected
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DFS vs. BFS
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