
GRAPHS
EECS 2011

120 March 2020

2

Graphs
• A graph is a pair (V, E), where
• V is a set of nodes, called vertices
• E is a collection of pairs of vertices, called edges
• Vertices and edges are objects and store elements

• Example:
• A vertex represents an airport and stores the three-letter airport code
• An edge represents a flight route between two airports and stores the

mileage of the route

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

849

80
2

1387174
3

1843

1099
1120

1233
337

2555

142

3

Edge Types
• Directed edge
• ordered pair of vertices (u,v)
• first vertex u is the origin
• second vertex v is the destination
• e.g., a flight

• Undirected edge
• unordered pair of vertices (u,v)
• e.g., a flight route

• Directed graph (digraph)
• all the edges are directed
• e.g., flight network

• Undirected graph
• all the edges are undirected
• e.g., route network

ORD PVDflight
AA 1206

ORD PVD849
miles

4

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications
• Electronic circuits
• Printed circuit board
• Integrated circuit

• Transportation networks
• Highway network
• Flight network

• Computer networks
• Local area network
• Internet
• Web

• Databases
• Entity-relationship diagram

Graphs 5

Terminology
• End vertices (or endpoints) of

an edge
• U and V are the endpoints of a

• Edges incident on a vertex
• a, d, and b are incident on V

• Adjacent vertices
• U and V are adjacent

• Degree of a vertex
• X has degree 5

• Parallel edges
• h and i are parallel edges

• Self-loop
• j is a self-loop

XU

V

W

Z

Y

a

c

b

e
d

f

g

h

i

j

6

Terminology: Directed Graphs

For directed graphs:
• Origin of an edge
• Destination of an edge
• Outgoing edge
• Incoming edge
• Out-degree of vertex v:

number of outgoing edges of
v

• In-degree of vertex v: number
of incoming edges of v

A B

C D

7

P1

Paths
• Path
• sequence of alternating vertices and

edges
• begins with a vertex
• ends with a vertex
• each edge is preceded and followed

by its endpoints
• Path length
• the total number of edges on the

path
• Simple path
• path such that all vertices are

distinct (except that the first and last
could be the same)

• Examples
• P1=(V,b,X,h,Z) is a simple path
• P2=(U,c,W,e,X,g,Y,f,W,d,V) is a path

that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

8

Cycles
• Cycle
• circular sequence of alternating

vertices and edges
• each edge is preceded and

followed by its endpoints
• Simple cycle
• cycle such that all its vertices are

distinct (except the first and the
last)

• Examples
• C1=(V,b,X,g,Y,f,W,c,U,a,V) is a

simple cycle
• C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is

a cycle that is not simple
• A directed graph is acyclic if it

has no cycles Þ called DAG
(directed acyclic graph)

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

9

Properties of Undirected Graphs
Notation

V number of
vertices

E number of edges
deg(v) degree of vertex v

Property 1
Sv deg(v) = 2E
Proof: each edge is

counted twice
Property 2

In an undirected graph
with no loops
E £ V (V - 1)/2

Proof: each vertex has
degree at most (V - 1)

What is the bound for a
directed graph?

Example
¡V = 4
¡E = 6
¡deg(v) = 3

10

Connectivity - Undirected Graphs

connected not connected

• An undirected graph is connected if there is a path from
every vertex to every other vertex.

11

Connectivity - Directed Graphs
• A directed graph is called strongly connected if there is a

path from every vertex to every other vertex.
• If a directed graph is not strongly connected, but the

corresponding undirected graph is connected, then the
directed graph is said to be weakly connected.

12

GRAPH ADT AND DATA
STRUCTURES
EECS 2011

Graphs 13

Vertices and Edges
• A graph is a collection of vertices and edges.
• We model the abstraction as a combination of three
data types: Vertex, Edge, and Graph.

• A vertex is a lightweight object that stores an
arbitrary element provided by the user (e.g., an
airport code)
• We assume it supports a method, element(), to retrieve the stored

element.

• An edge stores an associated object (e.g., a flight
number, travel distance, cost), retrieved with the
element() method.

Graph ADT
Graphs 14

15

Representation of Graphs
• Two popular computer representations of a graph:

Both represent the vertex set and the edge set, but in
different ways.

1. Adjacency Matrices
Use a 2D matrix to represent the graph

2. Adjacency Lists
Use a set of linked lists, one list per vertex

16

Adjacency Matrix Representation
• 2D array of size n x n where n is the number of vertices in

the graph
• A[i][j]=1 if there is an edge connecting vertices i and j;

otherwise, A[i][j]=0

17

Adjacency Matrix Example

2

4

3

5

1

7
6

9

8

0 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 1 0 1

2 0 1 0 0 1 0 0 0 1 0

3 0 1 0 0 1 1 0 0 0 0

4 0 0 1 1 0 0 0 0 0 0

5 0 0 0 1 0 0 1 0 0 0

6 0 0 0 0 0 1 0 1 0 0

7 0 1 0 0 0 0 1 0 0 0

8 1 0 1 0 0 0 0 0 0 1

9 0 1 0 0 0 0 0 0 1 0

Graphs 18

Adjacency Matrix Structure
• Augmented vertex objects
• Integer key (index)

associated with vertex

• 2D-array adjacency array
• Reference to edge object

for adjacent vertices
• Null for non-adjacent

vertices

• The “old fashioned”
version just has 0 for no
edge and 1 for edge

19

Adjacency Matrices: Analysis
• The storage requirement is Q(V2).

• not efficient if the graph has few edges.
• appropriate if the graph is dense; that is E= Q(V2)

• If the graph is undirected, the matrix is symmetric.
There exist methods to store a symmetric matrix
using only half of the space.
• Note: the space requirement is still Q(V2).

• We can detect in O(1) time whether two vertices
are connected.
• areAdjacent (v, w): returns true if v and w are adjacent, and false

otherwise.

20

Adjacency Lists

• If the graph is sparse, a better solution is an adjacency list
representation.

• For each vertex v in the graph, we keep a list of vertices
adjacent to v.

21

Adjacency List Example

2

4

3

5

1

7
6

9

8

0 0
1
2
3
4
5
6
7
8
9

2 3 7 9

8

1 4 8

1 4 5

2 3
3 6

5 7

1 6

0 2 9

1 8

22

Adjacency Lists: Analysis

• Testing whether u is adjacency to v takes time O(deg(v))
or O(deg(u)).

a b

c

d e

b

b

c

c

c

d

a e

a d e

a e

d

Space =
Q (V + Sv deg(v)) = Q (V + E)

Graphs 23

Adjacency List Structure
• Incidence sequence

for each vertex
• sequence of

references to edge
objects of incident
edges

• Augmented edge
objects
• references to

associated positions
in incidence
sequences of end
vertices

Adjacency List Structure Implementation
• Incidence sequence for
each vertex
• sequence of references to

edge objects of incident
edges

• Augmented edge
objects
• references to associated

positions in incidence
sequences of end vertices

24

25

Adjacency Lists vs. Adjacency Matrices
• An adjacency list takes Q(V + E).
• If E = O(V2) (dense graph), both use Q(V2) space.
• If E = O(V) (sparse graph), adjacency lists are more space efficient.

• Adjacency lists
• More compact than adjacency matrices if graph has few edges
• Requires more time to find if an edge exists

• Adjacency matrices
• Always require Q(V2) space

• This can waste lots of space if the number of edges is small
• Can quickly find if an edge exists

Homework
• Prove the big-Oh running time of the graph
methods shown in the next slide.

• incidentEdges(v): returns the edges incident on v.
• areAdjacent (v, w): returns true if v and w are adjacent,

and false otherwise.

26

27

Running Time of Graph Methods
• n vertices, m edges
• no parallel edges
• no self-loops
• bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n
areAdjacent (v, w) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1

28

BREADTH FIRST
SEARCH
EECS 2011

20 March 2020

29

Graph Traversal (14.3)
• Application example

• Given a graph representation and a vertex s in the
graph, find all paths from s to the other vertices.

• Two common graph traversal algorithms:
• Breadth-First Search (BFS)

• Idea is similar to level-order traversal for trees.
• Implementation uses a queue.
• Gives shortest path from a vertex to another.

• Depth-First Search (DFS)
• Idea is similar to preorder traversal for trees (visit a node then

visit its children recursively).
• Implementation uses a stack (implicitly via recursion).

30

BFS and Shortest Path Problem
• Given any source vertex s, BFS visits the other vertices at

increasing distances away from s. In doing so, BFS
discovers shortest paths from s to the other vertices.

• What do we mean by “distance”? The number of edges
on a path from s (unweighted graph).

2

4

3

5

1

7
6

9

8

0
Consider s=vertex 1

Nodes at distance 1?
2, 3, 7, 91

1

1

1
2

22

2

s

Example

Nodes at distance 2?
8, 6, 5, 4

Nodes at distance 3?
0

31

How Does BSF Work?
• Similarly to level-order traversal for trees.

• The BFS code we will discuss works for both
directed and undirected graphs.

32

Skeleton of BFS Algorithm

output v;

33

BFS Algorithm

flag[]: visited or not

output v;

34

BFS Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize “visited”
table (all False)

Initialize Q to be empty

35

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has
been visited

Place source 2 on the queue

36

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited 1, 4, 8

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

Neighbors

37

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }

Mark newly visited
neighbors 0, 9

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

38

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark newly visited
neighbors 3, 7

Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

39

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
-- 4 has no unvisited neighbors!

Neighbors

40

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
-- 0 has no unvisited neighbors!

Neighbors

41

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
-- 9 has no unvisited neighbors!

Neighbors

42

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.
-- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5

43

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
-- place neighbor 6 on the queue

Neighbors

Mark new visited
Vertex 6

44

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.
-- no unvisited neighbors of 5

Neighbors

45

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.
-- no unvisited neighbors of 6

Neighbors

46

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { } STOP!!! Q is empty!!!

What did we discover?

Look at “visited” tables.

There exists a path from source
vertex 2 to all vertices in the graph

47

Running Time of BFS
• Assume adjacency list
• V = number of vertices; E = number of edges

Each vertex will enter Q at
most once. dequeue is O(1).

The for loop takes time
proportional to deg(v).

48

Running Time of BFS (2)
• Recall: Given a graph with E edges

• The total running time of the while loop is:

• This is the sum over all the iterations of the while loop!

• Homework: What is the running time of BFS if we use an
adjacency matrix?

O(Σvertex v (1 + deg(v))) = O(V+E)

Σvertex v deg(v) = 2E

49

BFS and Unconnected Graphs

D
E

A
C

F
B

G
K

H

L
N

M
O R

QP

s

A graph may not be connected
(strongly connected) Þ enhance
the above BFS code to
accommodate this case.

A graph with 3 components

50

Recall the BFS Algorithm …

output (v);

51

Enhanced BFS Algorithm
• We can re-use the previous

BFS(s) method to compute the
connected components of a
graph G.

BFSearch(G) {
i = 1; // component number
for every vertex v

flag[v] = false;
for every vertex v

if (flag[v] == false) {
print (“Component ” + i++);
BFS(v);

}
}

K

H

A
C

B

N

M

A graph with 3 components

L

52

Applications of BFS
What can we do with the BFS code we just discussed?
• Is there a path from source s to a vertex v?
• Check flag[v].

• Is an undirected graph connected?
• Scan array flag[].
• If there exists flag[u] = false then …

• To output the contents (e.g., the vertices) of a connected
graph
• What if the graph is not connected? Slide 24

• To output the contents of a strongly connected graph
• What if the graph is not connected or weakly connected? Slide 24

53

Other Applications of BFS
• To find the shortest path from a vertex s to a vertex v in an

unweighted graph

• To find the length of such a path

• To find out if a graph contains cycles

• To find the connected components of a graph that is not
connected

• To construct a BSF tree/forest from a graph

APPLICATIONS OF BFS
EECS 2011

3/20/20 12:32 PM 54

Applications of BFS
• To find the shortest path from a vertex s to a vertex v in an

unweighted graph

• To find the length of such a path

• To find out if a strongly connected directed graph contains
cycles

• To find out if an undirected graph contains cycles

• To construct a BSF tree/forest from a graph

55

FINDING SHORTEST PATHS
USING BFS

56

Finding Shortest Paths
• The BFS code we have seen
• find outs if there exists a path from a vertex s to a vertex v
• prints the vertices of a graph (connected/strongly connected).

• What if we want to find
• the shortest path from s to a vertex v (or to every other vertex)?
• the length of the shortest path from s to a vertex v?

• In addition to array flag[], use an array named prev[], one
element per vertex.
• prev[w] = v means that vertex w was visited right after v

57

Example
58

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

prev[] now can be traced backward
to report the path!

8

2

-

1

2

3

7

1

2

8

prev[]

BFS and Finding Shortest Path
59

initialize
all pred[v] to -1

record where you
came from

already got shortest path from s to v

Example
60

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table
(T/F)

F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize visited
table (all false)

Initialize prev[] to -1
Initialize Q to be empty

-

-

-

-

-

-

-

-

-

-

prev[]

61

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has
been visited.

Place source 2 on the queue.

-

-

-

-

-

-

-

-

-

-

prev

62

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited.

Record in prev
that we came from
2.

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

Neighbors

-

2

-

-

2

-

-

-

2

-

prev

63

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }
Mark new visited
Neighbors.

Record in prev
that we came
from 8.

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

8

2

-

-

2

-

-

-

2

8

prev

64

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited
Neighbors.

Record in prev
that we came
from 1.

Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

8

2

-

1

2

-

-

1

2

8

prev

65

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
-- 4 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

prev

66

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
-- 0 has no unvisited neighbors!

Neighbors 8

2

-

1

2

-

-

1

2

8

prev

67

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
-- 9 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

prev

68

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.
-- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5.

Record in prev
that we came
from 3.

8

2

-

1

2

3

-

1

2

8

prev

69

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
-- place neighbor 6 on the queue.

Neighbors

Mark new visited
Vertex 6.

Record in prev
that we came
from 7.

8

2

-

1

2

3

7

1

2

8

prev

70

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.
-- no unvisited neighbors of 5.

Neighbors

8

2

-

1

2

3

7

1

2

8

prev

71

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.
-- no unvisited neighbors of 6.

Neighbors

8

2

-

1

2

3

7

1

2

8

prev

BFS Finished
72

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { } STOP!!! Q is empty!!!
prev[] now can be traced backward
to report the path!

8

2

-

1

2

3

7

1

2

8

prev[]

73

Finding the Shortest Path
• To print the shortest path from s to a vertex u,
start with prev[u] and backtrack until reaching the
source s (path reporting).
• Running time of backtracking = ?

Example of Path Reporting
74

8

2

-

1

2

3

7

1

2

8

0

1

2

3

4

5

6

7

8

9

nodes visited from

Try some examples; report path from s to v:
Path(2-0) Þ
Path(2-6) Þ
Path(2-1) Þ

Path Reporting
• Given a vertex w, report the shortest path from s to w

currentV = w;
while (prev[currentV] ¹ –1) {

output currentV; // or add to a list
currentV = prev[currentV];

}
output s; // or add to a list

• The above code prints the path in reverse order.

75

76

Path Reporting (2)
• To output the path in the right order,
• Print the above list in reverse order.
• Use a stack instead of a list.

currentV = w;
while (prev[currentV] ¹ –1)

S.push(currentV);
currentV = prev[currentV];

}
while (!S.isEmpty())

print(S.pop());
print(s);

Path Reporting (3)
• To output the path in the right order,
• Print the list in reverse order.
• Use a stack instead of a list.
• Use a recursive method (implicit use of a stack).

printPath (w) {
if (prev[w] ¹ –1)

printPath (prev[w]);
output w;

}

77

Finding Shortest Path Length
• To find the length of the shortest path from s to u, start

with prev[u], backtrack and increment a counter until
reaching the source s.
• Running time of backtracking = ?

• Following is a faster way to find the length of the shortest
path from s to u (at the cost of using more space)
• Allocate an array d[], one element per vertex.
• When BSF algorithm ends, d[u] records the length of the

shortest path from s to u.
• Running time of finding path length = ?

78

Recording the Shortest Distance

79

d[v] = ¥;

d[w] = d[v] + 1;

d[s] = 0;

d[v] stores shortest
distance from s to v

FINDING CYCLES

80

Finding Cycles in Undirected Graphs
• To detect/find cycles in an undirected graph, we need to

classify the edges into 3 categories during program
execution:
• unexplored edge: never visited.
• discovery edge: visited for the very first time.
• cross edge: edge that forms a cycle.

• When the BFS algorithm terminates, the discovery edges
form a spanning tree.

• If there exists a cross edge, the undirected graph contains
a cycle.

81

BFS Algorithm (in textbook)

Breadth-First Search 82

• The algorithm uses a
mechanism for setting and
getting “labels” of vertices
and edges

Algorithm BFS(G, s)
L0¬ new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ¬ 0
while ¬Li.isEmpty()

Li +1¬ new empty sequence
for all v Î Li.elements()

for all e Î G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ¬ opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ¬ i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u Î G.vertices()
setLabel(u, UNEXPLORED)

for all e Î G.edges()
setLabel(e, UNEXPLORED)

for all v Î G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)

Example

Breadth-First Search 83

CB

A

E

D

discovery edge

cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

Example (2)

Breadth-First Search 84

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Example (3)

Breadth-First Search 85

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

DEPTH FIRST SEARCH
EECS 2011

20 March 2020 86

Depth First Search (DFS)
• DFS is another popular graph search strategy

• Idea is similar to pre-order traversal (visit node, then
visit children recursively)

• DFS will continue to visit neighbors in a recursive
pattern
• Whenever we visit v from u, we recursively visit all
unvisited neighbors of v. Then we backtrack (return) to
u.

87

88

DFS Traversal Example

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

F

F

F

F

F

F

F

F

Initialize visited
table (all False)

Initialize Pred to -1

-

-

-

-

-

-

-

-

-

-

Pred

DFS Algorithm Idea
• Similar to BFS algorithm, except that we use a stack
instead of a queue for backtracking.

• In practice, we use recursion instead of an explicit stack.

90

BFS Algorithm

T = empty stack;

T.push(s);

v = T.pop();

T.push(w);

DFS Algorithm
91

Flag all vertices as not
visited

Flag v as visited; print v;

For unvisited neighbors,
call RDFS(w) recursively

We can also record the paths using prev[].
Where do we insert the code for prev[]?

print v;

Example
92

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

F

F

F

F

F

F

F

F

Initialize visited
table (all False)

Initialize Pred to -1

-

-

-

-

-

-

-

-

-

-

Pred

93

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Mark 2 as visited

-

-

-

-

-

-

-

-

-

-

Pred

RDFS(2)
Now visit RDFS(8)

94

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

T

F

Mark 8 as visited

mark Pred[8]

-

-

-

-

-

-

-

-

2

-

Pred

RDFS(2)
RDFS(8)

2 is already visited, so visit RDFS(0)

Recursive
calls

95

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

F

T

F

F

F

F

F

T

F

Mark 0 as visited

Mark Pred[0]

8

-

-

-

-

-

-

-

2

-

Pred

RDFS(2)
RDFS(8)

RDFS(0) -> no unvisited neighbors, return
to call RDFS(8)

Recursive
calls

96

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

F

T

F

F

F

F

F

T

F

8

-

-

-

-

-

-

-

2

-

Pred

RDFS(2)
RDFS(8)

Now visit 9 -> RDFS(9)

Recursive
calls

Back to 8

97

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

F

T

F

F

F

F

F

T

T

Mark 9 as visited

Mark Pred[9]

8

-

-

-

-

-

-

-

2

8

Pred

RDFS(2)
RDFS(8)

RDFS(9)
-> visit 1, RDFS(1)

Recursive
calls

98

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

F

F

F

F

T

T

Mark 1 as visited

Mark Pred[1]

8

9

-

-

-

-

-

-

2

8

Pred

RDFS(2)
RDFS(8)

RDFS(9)
RDFS(1)

visit RDFS(3)

Recursive
calls

99

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

F

F

F

F

T

T

Mark 3 as visited

Mark Pred[3]

8

9

-

1

-

-

-

-

2

8

Pred

RDFS(2)
RDFS(8)

RDFS(9)
RDFS(1)

RDFS(3)
visit RDFS(4)

Recursive
calls

100

RDFS(2)
RDFS(8)

RDFS(9)
RDFS(1)

RDFS(3)
RDFS(4) à STOP all of 4’s neighbors have been visited

return back to call RDFS(3)

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

F

T

T

Mark 4 as visited

Mark Pred[4]

8

9

-

1

3

-

-

-

2

8

Pred

Recursive
calls

101

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

F

T

T

8

9

-

1

3

-

-

-

2

8

Pred
RDFS(2)

RDFS(8)
RDFS(9)

RDFS(1)
RDFS(3)

visit 5 -> RDFS(5)

Recursive
calls

Back to 3

102

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

F

F

T

T

8

9

-

1

3

3

-

-

2

8

Pred
RDFS(2)

RDFS(8)
RDFS(9)

RDFS(1)
RDFS(3)

RDFS(5)
3 is already visited, so visit 6 -> RDFS(6)

Recursive
calls

Mark 5 as visited

Mark Pred[5]

103

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

F

T

T

8

9

-

1

3

3

5

-

2

8

PredRDFS(2)
RDFS(8)

RDFS(9)
RDFS(1)

RDFS(3)
RDFS(5)

RDFS(6)
visit 7 -> RDFS(7)

Recursive
calls

Mark 6 as visited

Mark Pred[6]

104

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
RDFS(8)

RDFS(9)
RDFS(1)

RDFS(3)
RDFS(5)

RDFS(6)
RDFS(7) -> Stop no more unvisited neighbors

Recursive
calls

Mark 7 as visited

Mark Pred[7]

105

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
RDFS(8)

RDFS(9)
RDFS(1)

RDFS(3)
RDFS(5)

RDFS(6) -> Stop

Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

106

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
RDFS(8)

RDFS(9)
RDFS(1)

RDFS(3)
RDFS(5) -> Stop

Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

107

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
RDFS(8)

RDFS(9)
RDFS(1)

RDFS(3) -> Stop

Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

108

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
RDFS(8)

RDFS(9)
RDFS(1) -> Stop

Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

109

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
RDFS(8)

RDFS(9) -> Stop
Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

110

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
RDFS(8) -> StopRecursive

calls

2

4

3

5

1

7
6

9

8

0

source

Example Finished
111

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2) -> Stop

Recursive calls finished.

2

4

3

5

1

7
6

9

8

0

source

Time Complexity of DFS

• We never visited a vertex more than once.

• We had to examine the adjacency lists of all vertices.
• Σvertex v degree(v) = 2E

• So, the running time of DFS is proportional to the number
of edges and number of vertices (same as BFS)
• O(V + E)

• What is the running time of DFS if we use an adjacency
matrix?

112

Enhanced DFS Algorithm

• What if a graph is not
connected (strongly
connected)?
• Use an enhanced version of

DFS, which is similar to the
enhanced BFS algorithm.

DFSearch(G) {
i = 1; // component number
for every vertex v

flag[v] = false;
for every vertex v

if (flag[v] == false) {
print (“Component ” + i++);
RDFS(v);

}
}

113

Applications of DFS
• Is there a path from source s to a vertex v?
• Is an undirected graph connected?
• To output the contents of a graph
• To find the connected components of a graph
• To find out if a graph contains cycles and report
cycles.

• To construct a DSF tree/forest from a graph

114

APPLICATIONS OF DFS
EECS 2011

20 March 2020 115

Applications of DFS
• Is there a path from source s to a vertex v?
• Check array flag[]

• Is an undirected graph connected?
• Check array flag[]

• To output the contents (e.g., the vertices) of a graph
• Call RDFS() if graph is connected
• Call DFSearch() if the “connected” property is not known

• To find the connected components of a graph
• Call DFSearch()

• To find out if a graph contains cycles and report cycles.
• To construct a DSF tree/forest from a graph

116

DFS Path Tracking
117

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

Pred

Try some examples.
Path(0) ->
Path(6) ->
Path(7) ->

DFS finds out path too.

2

4

3

5

1

7
6

9

8

0

source

Finding Cycles Using DFS
• Similar to using BFS.

• For undirected graphs, classify the edges into 3
categories during program execution: unvisited
edge, discovery edge, and back edge (equivalent
to cross edge in BFS).
• If there exists a back edge, the undirected graph

contains a cycle.

118

© 2010 Goodrich, Tamassia Depth-First Search 119

DFS Algorithm
q The algorithm uses a mechanism

for setting and getting “labels”
of vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e Î G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ¬ opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u Î G.vertices()
setLabel(u, UNEXPLORED)

for all e Î G.edges()
setLabel(e, UNEXPLORED)

for all v Î G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)

© 2010 Goodrich, Tamassia Depth-First Search 120

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

© 2010 Goodrich, Tamassia Depth-First Search 121

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

Applications – DFS vs. BFS
• What can BFS do and DFS can’t?
• Finding shortest paths (in unweighted graphs)

• What can DFS do and BFS can’t?
• Finding out if a connected undirected graph is biconnected

• A connected undirected graph is biconnected if there are no
vertices whose removal disconnects the rest of the graph.

• Application in computer networks: ensuring that a network is still
connected when a router/link fails.

122

A graph that is not biconnected

123

DFS vs. BFS

124

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS
Spanning forest, connected
components, paths, cycles Ö Ö

Shortest paths Ö

Biconnected components Ö

