1. Give a recursive definition of the set defined below:

$$
S=\left\{a^{n} b c^{n} \mid n \in \mathbb{N} \cup\{0\}\right\}
$$

2. Suppose a language L is defined recursively as:
$\epsilon \in L$,
for every x, y in L, axby and bxay are both in L,
nothing else is in L.
Prove that L is precisely the set of strings in $\{a, b\}^{*}$ with equal numbers of a 'a and b's.
3. Design a DFA for the language that contains only all binary strings of length 3 .
4. Design a DFA for the language that contains only binary strings that end in 0110.
5. Design a DFA for the language that contains only binary strings of non-zero length whose bits sum to a multiple of 3 .
6. Design a DFA for the language over $\Sigma=\{a, b\}$ that contains all words containing the string $a b a b$.
7. Design a DFA for the language over $\Sigma=\{a, b\}$ that contains all words not ending in $a a b$.
8. Design a DFA for the language over $\Sigma=\{a, b\}$ that contains all words in which the third letter from the right is b.
9. Design a DFA for the language that contains only binary strings in which every odd position is a 1 .
10. Design a DFA for the language over $\Sigma=\{a, b, c\}$ that contains all words in which there are an odd number of a 's.
11. Design a DFA for the language that contains only binary strings in which the first and last symbols are different.
12. Consider the alphabet $\Sigma=\{a, b\}$. Design a DFA for the language $L=\{w| | w \mid>0$, and the difference in the number of a 's and b 's is even $\}$.
13. Consider the alphabet $\Sigma=\{a, b\}$. Design a DFA for the language $L=\{w| | w \mid>0$, and w has an even number of a 's and an odd number of b 's $\}$.
14. (*) Show that if L is a regular language, then so is $L^{\prime}=\left\{w \mid w \in L\right.$ and $\left.w \in L^{R}\right\}$.
15. (*) Given a DFA, how can you determine if the language it accepts is finite or infinite?
