EECS 2001N: Introduction to the Theory of Computation

Suprakash Datta
 Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N
Also on Moodle

Recap from Last Lecture

- The first undecidable proof was hard - used diagonalization/self-reference
- For the rest, we assumed decidable and used it as a subroutine to design TM's that decide known undecidable problems
- Q: Can we make this technique more structured?
- We still have not shown that $E Q_{T M}$ is not TM-recognizable, and that $E Q_{T M}$ is not co-TM-recognizable

$E Q_{T M}$ is Not TM-Recognizable

- What can we use?

Not much choice, except $\overline{A_{T M}}, E_{T M}$

- So we have to show if we can build a recognizer for $E Q_{T M}$, we can build a recognizer for $E_{T M}$
- This is a contradiction
- So $E Q_{T M}$ is not TM-recognizable
- Intuition: If we have a recognizer for checking equality, we can use it to recognize equality with a TM that rejects everything

$E Q_{\text {TM }}$ is Not TM-Recognizable - Details

- Proof by contradiction: Assume $E Q_{T M}$ is TM-recognizable, and there is a recognizer R for it
- Given R, build a recognizer S for $E_{T M}$ as follows
- Construct (the description of) a machine M_{e} that rejects all inputs
- Take the input machine M of $E_{T M}$ and construct input $\left\langle M, M_{e}\right\rangle$ for $E Q_{T M}$
- Run R on $\left\langle M, M_{e}\right\rangle$

If R accepts, ACCEPT Else if R rejects, REJECT

- Note that S is not guaranteed to halt because R may not halt that is ok since we are building a recognizer

$E Q_{T M}$ is Not TM-Recognizable - Alternative Proof

Let us use $\overline{A_{T M}}$ instead

- Proof by contradiction: Assume $E Q_{T M}$ is TM-recognizable, and there is a recognizer R for it
- Given R, build a recognizer S for $\overline{A_{T M}}$ as follows
- Construct a machine M_{e} that rejects all inputs
- Take the input $\langle M, w\rangle$ of $\overline{A_{T M}}$ and construct a TM M^{\prime} that ignores its input, runs M on w and ACCEPTS if M accepted w
- Construct input $\left\langle M^{\prime}, M_{e}\right\rangle$ for $E Q_{T M}$
- Run R on $\left\langle M^{\prime}, M_{e}\right\rangle$

If R accepts, ACCEPT Else if R rejects, REJECT

- Crucial fact: S accepts iff M does not accept w
- Note: again S is not guaranteed to halt because R may not halt

$E Q_{T M}$ is Not co-TM-Recognizable

- Let us use $A_{T M}$
- Proof by contradiction: Assume $E Q_{T M}$ is co-TM-recognizable, and there is a recognizer R for it (R always halts and rejects if the inputs are unequal)
- Given R, build a recognizer S for $A_{T M}$ as follows
- Construct a machine M_{a} that accepts all inputs
- Take the input $\langle M, w\rangle$ of $A_{T M}$ and construct a TM M^{\prime} that ignores its input, runs M on w and ACCEPTS if M accepted w
- Construct input $\left\langle M^{\prime}, M_{a}\right\rangle$ for $E Q_{T M}$
- Run R on $\left\langle M^{\prime}, M_{a}\right\rangle$

If R accepts, ACCEPT Else if R rejects, REJECT

- Crucial fact: S accepts iff M accepts w
- Note: again S is not guaranteed to halt because R may not halt

Enumerability and Recognizability

- Terminology: Recursive or decidable, (recursively) enumerable or recognizable
- Crucial fact: The set of all enumerable languages is countable
- How to enumerate an enumerable language?
- Straightforward idea: enumerate all strings, see if recognizer accepts it
- Problem: recognizer may not halt!
- Next idea: run for 1 step on all inputs, then 2 steps on all inputs,...
- Problem: there are infinitely many inputs!

Enumerating a Recognizable Set - Solution

Really smart idea (Page 179 of the text)!

- Simulate recognizer for 1 step on input 1
- Simulate recognizer for 2 steps on inputs 1,2
- Simulate recognizer for 3 steps on inputs 1, 2,3
- Simulate recognizer for i steps on inputs $1,2, \ldots, i$
- Will accept inputs in increasing order of steps, not indices
- Each time an input is accepted, write it on a tape - enumeration

