EECS 2001N: Introduction to the Theory of Computation

Suprakash Datta Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N Also on Moodle

S. Datta (York Univ.)

EECS 2001N W 2019-20

Other Questions on Infinite Sets

- The set ℕ is countable by definition. So a proof showing it is uncountable (using diagonalization) must fail. But where does it fail?
- We showed that $\mathcal{P}(\mathbb{N})$ (and \mathbb{R}) are uncountable. What about $\mathcal{P}(\mathbb{R})$?
- What about $\mathcal{P}(\mathcal{P}(\mathbb{R}))$?
- Can we build bigger and bigger infinities this way? Cantor's Continuum hypothesis – YES!

Back to TM's and Languages

- We showed that the set of languages is not countable
- We showed that the set of TM's is countable
- So there are many languages that are not Turing recognizable
- Are there interesting languages for which we can prove that there is no Turing machine that recognizes it?

Our First Undecidable Language

The acceptance problem for Turing Machines: $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that accepts } w \}$ Theorem: A_{TM} is undecidable

- Proof by contradiction: Assume that TM G decides A_{TM}
- So G is as follows

$$G(\langle M, w \rangle) = \text{``accept" if } M \text{ accepts } w$$
$$= \text{``reject" if } M \text{ does not accept } w$$

• From G we construct a new TM D that will get us into trouble...

Our First Undecidable Language - 2

Design a new TM D that takes as input a TM M as follows

- *D* runs TM *G* on input $\langle M, \langle M \rangle \rangle$
- Disagree on the answer of G
- Note that D always terminates because G always terminates
- So in short,

$$D(\langle M \rangle) = \text{``accept'' if } G \text{ rejects } \langle M, \langle M \rangle \rangle$$
$$= \text{``reject'' if if } G \text{ accepts } \langle M, \langle M \rangle \rangle$$

So,

$$D(\langle M \rangle) = \text{``accept" if } M \text{ rejects } \langle M, \rangle$$
$$= \text{``reject" if if } M \text{ accepts } \langle M \rangle$$

Our First Undecidable Language - 3

• Recall,

$$D(\langle M \rangle) = \text{``accept" if } M \text{ rejects } \langle M \rangle$$
$$= \text{``reject" if if } M \text{ accepts } \langle M \rangle$$

• Now run D on itself (i.e., $\langle D \rangle$)

Result:,

$$D(\langle D \rangle) = \text{``accept" if } D \text{ rejects } \langle D \rangle$$
$$= \text{``reject" if } D \text{ accepts } \langle D \rangle$$

- This makes no sense: D only accepts if it rejects, and vice versa
- This is a contradiction, therefore A_{TM} is undecidable

Viewing the Last Proof as Diagonalization

- This is an instance of self-referencing by a program
- This is sometimes natural a character counting program can run on itself

Self-referencing Problems

- Some such problems are decidable
 - How big is $\langle M \rangle$?
 - Is $\langle M \rangle$ a proper TM?
- Others are not
 - Does $\langle M \rangle$ halt or not?
 - Is there a smaller program M' that is equivalent?

Turing Unrecognizability

- A_{TM} is not TM-decidable, but it is TM-recognizable. Wy?
- Is there a language that is not TM-recognizable?
- A useful result:

Theorem: If a language A is TM-recognizable and its complement \overline{A} is recognizable, then A is TM-decidable.

Proof: Run the recognizing TMs for A and in parallel on input x. Wait for one of the TMs to accept. If the TM for A accepted: "accept x"; if the TM for A accepted: "reject x"

\overline{A}_{TM} is not TM-recognizable

 By the previous theorem it follows that A_{TM} cannot be TM-recognizable, because this would imply that A_{TM} is TM decidable

• We call languages like \overline{A}_{TM} co-TM recognizable

Other Languages that are not TM-recognizable

•
$$E_{TM} = \{ \langle G \rangle | G \text{ is a TM with } L(G) = \emptyset \}$$

- This is co-TM recognizable Obvious strategy: if the language is non-empty, we can find the first string that is accepted ...
- Is it TM-recognizable (and thus decidable)? Answer turns out to be NO
- $EQ_{TM} = \{ \langle G, H \rangle | G, H \text{ are TM's with } L(G) = L(H) \}$
 - Is this co-TM recognizable?
 - Is it TM-recognizable?
 - Turns out both answers are NO

We need more tools to reason about these languages