
EECS 2001N: Introduction to the Theory of

Computation

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N
Also on Moodle

S. Datta (York Univ.) EECS 2001N W 2019-20 1 / 11

http://www.eecs.yorku.ca/course/2001N


The last lecture

Other Questions on Infinite Sets

The set N is countable by definition. So a proof showing it is
uncountable (using diagonalization) must fail. But where does it
fail?

We showed that P(N) (and R) are uncountable. What about
P(R) ?

What about P(P(R)) ?

Can we build bigger and bigger infinities this way?
Cantor’s Continuum hypothesis – YES!

S. Datta (York Univ.) EECS 2001N W 2019-20 2 / 11



The last lecture

Back to TM’s and Languages

We showed that the set of languages is not countable

We showed that the set of TM’s is countable

So there are many languages that are not Turing recognizable

Are there interesting languages for which we can prove that
there is no Turing machine that recognizes it?

S. Datta (York Univ.) EECS 2001N W 2019-20 3 / 11



An Undecidable Language

Our First Undecidable Language

The acceptance problem for Turing Machines:
ATM = {〈M ,w〉|M is a TM that accepts w}
Theorem: ATM is undecidable

Proof by contradiction: Assume that TM G decides ATM

So G is as follows

G (〈M ,w〉) = “accept” if M accepts w

= “reject” if M does not accept w

From G we construct a new TM D that will get us into trouble...

S. Datta (York Univ.) EECS 2001N W 2019-20 4 / 11



An Undecidable Language

Our First Undecidable Language - 2

Design a new TM D that takes as input a TM M as follows

D runs TM G on input 〈M , 〈M〉〉
Disagree on the answer of G

Note that D always terminates because G always terminates

So in short,

D(〈M〉) = “accept” if G rejects 〈M , 〈M〉〉
= “reject” if if G accepts 〈M , 〈M〉〉

So,

D(〈M〉) = “accept” if M rejects 〈M , 〉
= “reject” if if M accepts 〈M〉

S. Datta (York Univ.) EECS 2001N W 2019-20 5 / 11



An Undecidable Language

Our First Undecidable Language - 3

Recall,

D(〈M〉) = “accept” if M rejects 〈M〉
= “reject” if if M accepts 〈M〉

Now run D on itself (i.e., 〈D〉)
Result:,

D(〈D〉) = “accept” if D rejects 〈D〉
= “reject” if if D accepts 〈D〉

This makes no sense: D only accepts if it rejects, and vice versa

This is a contradiction, therefore ATM is undecidable

S. Datta (York Univ.) EECS 2001N W 2019-20 6 / 11



An Undecidable Language

Viewing the Last Proof as Diagonalization

This is an instance of self-referencing by a program

This is sometimes natural - a character counting program can
run on itself

S. Datta (York Univ.) EECS 2001N W 2019-20 7 / 11



An Undecidable Language

Self-referencing Problems

Some such problems are decidable

How big is 〈M〉?

Is 〈M〉 a proper TM?

Others are not

Does 〈M〉 halt or not?

Is there a smaller program M ′ that is equivalent?

S. Datta (York Univ.) EECS 2001N W 2019-20 8 / 11



Turing Unrecognizability

Turing Unrecognizability

ATM is not TM-decidable, but it is TM-recognizable. Wy?

Is there a language that is not TM-recognizable?

A useful result:
Theorem: If a language A is TM-recognizable and its
complement A is recognizable, then A is TM-decidable.

Proof: Run the recognizing TMs for A and in parallel on input
x . Wait for one of the TMs to accept. If the TM for A
accepted: “accept x”; if the TM for A accepted: “reject x”

S. Datta (York Univ.) EECS 2001N W 2019-20 9 / 11



Turing Unrecognizability

ATM is not TM-recognizable

By the previous theorem it follows that ATM cannot be
TM-recognizable, because this would imply that ATM is TM
decidable

We call languages like ATM co-TM recognizable

S. Datta (York Univ.) EECS 2001N W 2019-20 10 / 11



Turing Unrecognizability

Other Languages that are not TM-recognizable

ETM = {〈G 〉|G is a TM with L(G ) = ∅}
This is co-TM recognizable
Obvious strategy: if the language is non-empty, we can find the
first string that is accepted ...

Is it TM-recognizable (and thus decidable)?
Answer turns out to be NO

EQTM = {〈G ,H〉|G ,H are TM’s with L(G ) = L(H)}
Is this co-TM recognizable?

Is it TM-recognizable?

Turns out both answers are NO

We need more tools to reason about these languages

S. Datta (York Univ.) EECS 2001N W 2019-20 11 / 11


	The last lecture
	An Undecidable Language
	Turing Unrecognizability

