EECS 2001N: Introduction to the Theory of Computation

Suprakash Datta Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N Also on Moodle

S. Datta (York Univ.)

EECS 2001N W 2019-20

Recap: Countably Infinite Sets

A set S is infinite if there exists a surjective function f : S → N:
 "The set S has at least as many elements as N"

A set S is countable if there exists a surjective function
 f : N → S: "The set S has at most as many elements as N"

A set S is countably infinite if there exists a bijective function
 f : S → N: "The sets N and S are of the same cardinality"

Countably Infinite Languages

• Let
$$\Sigma = \{0\}$$
. Then Σ^* is countable $f : \mathbb{N} \to \Sigma^*$, $f(i) = a^{i-1}$

- Let Σ be a finite alphabet. Then Σ* is countable Idea: We list Σ* in increasing order of length and for strings of the same length we list them in lexicographic order E.g.: {0,1} = {ϵ,0,1,00,01,10,11,000,...} Then each finite length string gets a unique finite label
- IMPORTANT: Set of all Turing machines T is countable: Idea: Every TM can be encoded as a string over some Σ. There is a surjective map from Σ* to T.

Countably Infinite Languages - 2

• We just argued that the set of all Turing machines *T* is countable

What about the set of all languages (problems)?
 We have argued before that this set is P(Σ*)

• We will show next that $\mathcal{P}(\Sigma^*)$ and some other sets (e.g., $\mathbb{R}, \mathcal{P}(\mathbb{N})$) are not countable!

$\mathcal{P}(\Sigma^*)$ is not Countable

Claim: There is no surjection $f : \mathbb{N} \to \mathcal{P}(\Sigma^*)$ Proof by contradiction. Assume there is a surjection f.

- $f(1), f(2), \ldots$ are all infinite bit strings in $\{0, 1\}^{\mathbb{N}}$
- Define the infinite string y = y₁y₂... by
 y_j = NOT(j-th bit of f(j))
- On the one hand $y \in \{0,1\}^{\mathbb{N}}$, but on the other hand: for every $j \in \mathbb{N}$ we know that $f(j) \neq y$ because f(j) and y differ in the j-th bit
- f cannot be a surjection: $\{0,1\}^{\mathbb{N}}$ is uncountable.

Diagonalization

$$\begin{array}{l} s_1 = \underbrace{0}{0} \underbrace$$

- Look at the bit string on the diagonal of this table: $s_d = 0100...$
- The negation of s_d, given by s = 1011..., does not appear in the table

Diagonalization: Recap

- We looked at a very innovative technique for proving that a set *S* is uncountable
- It is a proof by contradiction and starts off by assuming S is countable
- The argument does not (and should not) assume any specific ordering of the set *S*
- Rather it says: "Give me any enumeration/listing (or labeling with N, or bijection with N), and I will construct an element that is not listed/enumerated/labeled..., and that is a contradiction"

More Diagonalization: $\mathcal{P}(\mathbb{N})$ is not countable

- The set $\mathcal{P}(\mathbb{N})$ contains all the subsets of $\{1,2,\ldots\}$
- Each subset $X \subseteq \mathbb{N}$ can be identified by an infinite string of bits $x_1x_2...$ such that $x_j = 1$ iff $j \in X$
- There is a bijection between P(N) and {0,1}^N each bit string represents a unique subset of N and each subset of N corresponds to a unique bit string
- We could stop here and invoke the last slide, but let us rework the proof in the last slide
- Proof by contradiction: Assume P(N) countable. Hence there must exist a surjection f from N to the set of infinite bit strings {0,1}^N, or
 "There is a list of all infinite bit strings".
 - "There is a list of all infinite bit strings"
- Make the exact same diagonalization argument

More Diagonalization: \mathbb{R} is not countable

- Will use diagonalization to prove R' = [0, 1) is uncountable
- Let f be a function N → R'. So f(1), f(2),... are all infinite digit strings (padded with zeroes if required), and let f(i)_j be the j-th bit of f(i)
- Define the infinite string of digits $y = y_1 y_2 \dots$ by

$$y_j = f(i)_i + 1 \text{ if } f(i)_i < 8$$

= 7 if $f(i)_i \ge 8$

- Invoke diagonalization to get a contradiction
- So $R' \subset \mathbb{R}$ is not countable, and therefore \mathbb{R} is not countable