EECS 2001N: Introduction to the Theory of Computation

Suprakash Datta
 Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N
Also on Moodle

Recap: Countably Infinite Sets

- A set S is infinite if there exists a surjective function $f: S \rightarrow \mathbb{N}$: "The set S has at least as many elements as \mathbb{N} "
- A set S is countable if there exists a surjective function $f: \mathbb{N} \rightarrow S$: "The set S has at most as many elements as \mathbb{N} "
- A set S is countably infinite if there exists a bijective function $f: S \rightarrow \mathbb{N}$: "The sets \mathbb{N} and S are of the same cardinality"

Countably Infinite Languages

- Let $\Sigma=\{0\}$. Then Σ^{*} is countable $f: \mathbb{N} \rightarrow \Sigma^{*}, f(i)=a^{i-1}$
- Let Σ be a finite alphabet. Then Σ^{*} is countable Idea: We list Σ^{*} in increasing order of length and for strings of the same length we list them in lexicographic order E.g.: $\{0,1\}=\{\epsilon, 0,1,00,01,10,11,000, \ldots\}$

Then each finite length string gets a unique finite label

- IMPORTANT: Set of all Turing machines T is countable: Idea: Every TM can be encoded as a string over some Σ. There is a surjective map from Σ^{*} to T.

Countably Infinite Languages - 2

- We just argued that the set of all Turing machines T is countable
- What about the set of all languages (problems)? We have argued before that this set is $\mathcal{P}\left(\Sigma^{*}\right)$
- We will show next that $\mathcal{P}\left(\Sigma^{*}\right)$ and some other sets (e.g., $\mathbb{R}, \mathcal{P}(\mathbb{N})$) are not countable!

$\mathcal{P}\left(\Sigma^{*}\right)$ is not Countable

Claim: There is no surjection $f: \mathbb{N} \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$
Proof by contradiction. Assume there is a surjection f.

- $f(1), f(2), \ldots$ are all infinite bit strings in $\{0,1\}^{\mathbb{N}}$
- Define the infinite string $y=y_{1} y_{2} \ldots$ by $y_{j}=\operatorname{NOT}(\mathrm{j}-\mathrm{th}$ bit of $f(j))$
- On the one hand $y \in\{0,1\}^{\mathbb{N}}$, but on the other hand: for every $j \in \mathbb{N}$ we know that $f(j) \neq y$ because $f(j)$ and y differ in the j-th bit
- f cannot be a surjection: $\{0,1\}^{\mathbb{N}}$ is uncountable.

Diagonalization

$$
\begin{aligned}
& s_{1}=00000000000 \ldots \\
& s_{2}=11111111111 \ldots \\
& s_{3}=01010101010 \ldots \\
& s_{4}=10101010101 \ldots \\
& s_{5}=11010110101 \ldots \\
& s_{6}=00110110110 \ldots \\
& s_{7}=10001000100 \ldots \\
& s_{8}=00110011001 \ldots \\
& s_{9}=11001100110 \ldots \\
& s_{10}=11011100101 \ldots \\
& s_{11}=11010100100 \ldots \\
& \vdots \quad \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \cdot \text {. }
\end{aligned}
$$

- Look at the bit string on the diagonal of this table: $s_{d}=0100 \ldots$
- The negation of s_{d}, given by $s=1011 \ldots$, does not appear in the table

$$
s=10111010011 \ldots
$$

Diagonalization: Recap

- We looked at a very innovative technique for proving that a set S is uncountable
- It is a proof by contradiction and starts off by assuming S is countable
- The argument does not (and should not) assume any specific ordering of the set S
- Rather it says: "Give me any enumeration/listing (or labeling with \mathbb{N}, or bijection with \mathbb{N}), and I will construct an element that is not listed/enumerated/labeled..., and that is a contradiction"

More Diagonalization: $\mathcal{P}(\mathbb{N})$ is not countable

- The set $\mathcal{P}(\mathbb{N})$ contains all the subsets of $\{1,2, \ldots\}$
- Each subset $X \subseteq \mathbb{N}$ can be identified by an infinite string of bits $x_{1} x_{2} \ldots$ such that $x_{j}=1$ iff $j \in X$
- There is a bijection between $\mathcal{P}(\mathbb{N})$ and $\{0,1\}^{\mathbb{N}}$ - each bit string represents a unique subset of \mathbb{N} and each subset of \mathbb{N} corresponds to a unique bit string
- We could stop here and invoke the last slide, but let us rework the proof in the last slide
- Proof by contradiction: Assume $\mathcal{P}(\mathbb{N})$ countable. Hence there must exist a surjection f from \mathbb{N} to the set of infinite bit strings $\{0,1\}^{\mathbb{N}}$, or
"There is a list of all infinite bit strings"
- Make the exact same diagonalization argument

More Diagonalization: \mathbb{R} is not countable

- Will use diagonalization to prove $R^{\prime}=[0,1)$ is uncountable
- Let f be a function $\mathbb{N} \rightarrow R^{\prime}$. So $f(1), f(2), \ldots$ are all infinite digit strings (padded with zeroes if required), and let $f(i)_{j}$ be the j-th bit of $f(i)$
- Define the infinite string of digits $y=y_{1} y_{2} \ldots$ by

$$
\begin{aligned}
y_{j} & =f(i)_{i}+1 \text { if } f(i)_{i}<8 \\
& =7 \text { if } f(i)_{i} \geq 8
\end{aligned}
$$

- Invoke diagonalization to get a contradiction
- So $R^{\prime} \subset \mathbb{R}$ is not countable, and therefore \mathbb{R} is not countable

