# EECS 2001N: Introduction to the Theory of Computation

#### Suprakash Datta

Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N Also on Moodle

## Reasoning about Undecidable Problems

#### Questions:

 Q: How do we know there are undecidable problems?
 A: Through a counting argument: there are more languages than Turing machines and so there are languages than Turing machines. Thus some languages cannot be decidable

Q: What is an example of an undecidable problem?
 A: Through a very novel argument

# What is Counting



- Elementary view: Labeling with natural numbers
- This is the same as "listing" the numbers as  $a_1, a_2, \dots$
- More advanced view: Correspondence with a set (often  $\{1,2,\ldots,k\}, k\in\mathbb{N}$

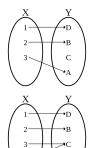
# Relationship with Functions

Types of functions  $f: X \to Y$ :

• f is one-to-one (injective) if every  $x \in X$  has a unique image f(x), i.e., if f(x) = f(y) then x = v

Undecidability

- f is onto (surjective) if every  $z \in Y$  is 'hit' by f(), i.e., if  $z \in Y$  then there is an  $x \in X$  such that f(x) = z
- f is a 1:1 correspondence (bijection) between X and Y if it is both one-to-one and onto





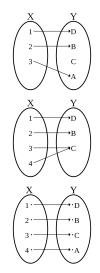


# Relationship with Functions - 2

If X, Y are **finite** sets, and  $f: X \rightarrow Y$  is:

- f is one-to-one (injective): X has no more elements than Y, i.e.,  $|X| \le |Y|$
- f is onto (surjective): X has at least as many elements as Y, i.e.,  $|X| \ge |Y|$
- f is a 1:1 correspondence (bijection): X has exactly as many elements as Y, i.e., |X| = |Y|

Q: Do these hold for infinite sets as well?



## Infinite Sets

Our intuition breaks down for infinite sets!

- Example: Consider  $A = \mathbb{N}$ ,  $B = \{2, 4, 6, 8, ...\}$  (the set of positive even numbers), and  $f : A \to B$ , f(n) = 2n
  - Note that f is a bijection, so intuitively, |A| = |B|

- Now note that  $B \subset A$  (B is a proper subset of A)
- What went wrong?

# Cardinality of Sets

- Intuitively, "number of elements"
- Intuition not useful for infinite sets
- New definition is needed
- A set S has k elements if and only if there exists a bijection between S and {1,2,...,k}
   S and {1,2,...,k} have the same cardinality.
- If there is a surjection possible from  $\{1, 2, ..., n\}$  to S, then  $n \ge |S|$
- We can generalize this way of comparing the sizes of sets to infinite ones

# Counting the Number of Languages over $\{0,1\}$

- Suppose we consider only words of size  $k \in \mathbb{N}$
- There are  $2^k$  such words
- The number of possible languages are 2<sup>2<sup>k</sup></sup> because each word can be part of the language or not, so 2 choices for each of 2<sup>k</sup> words
- If *k* is allowed to be unbounded, then the number of languages is infinite
- The number of possible Java programs is also infinite
- How can we show that there are more problems than Java programs?

# Refining the Notion of Infinite Sets

• A set S is infinite if there exists a surjective function  $f: S \to \mathbb{N}$ : "The set S has at least as many elements as  $\mathbb{N}$ "

• A set S is countable if there exists a surjective function  $f: \mathbb{N} \to S$ : "The set S has at most as many elements as  $\mathbb{N}$ "

• A set S is countably infinite if there exists a bijective function  $f:S\to\mathbb{N}$ : "The sets  $\mathbb{N}$  and S are of the same cardinality"

### Counterintuitive facts

- Previously given example: Consider  $A = \mathbb{N}$ ,  $B = \{2, 4, 6, 8, ...\}$  (the set of positive even numbers), and  $f : A \to B$ , f(n) = 2n, f is a bijection, so A, B have the same cardinality
- A proper subset of  $\mathbb N$  has the same cardinality as  $\mathbb N!$
- Same holds for odd natural numbers
- What about the integers?

# Cardinality of Integers

- Clearly  $\mathbb{N} \subset \mathbb{Z}$ ; in fact  $\mathbb{N}$  is "about half of"  $\mathbb{Z}$
- Can we get a bijection from  $\mathbb{N}$  to  $\mathbb{Z}$ ? How?
- So we have to handle zero and the negative integers. Suppose we label 0 with 1. How to we handle the negative numbers?
- $\bullet$  Idea: use the fact that the set of odd and even natural numbers are each in bijection with  $\mathbb N$

| • | <br>7  | 5  | 3  | 1 | 2 | 4 | 6 |  |
|---|--------|----|----|---|---|---|---|--|
|   | <br>-3 | -2 | -1 | 0 | 1 | 2 | 3 |  |

Q: What about the non-integer numbers?

# Cardinality of Rational Numbers

 There are many more positive rational numbers than natural numbers

- Between any two successive integers n, n+1, there are an infinite number of rationals (e.g., consider the set of numbers of the form  $n+\frac{1}{k}$ , where  $k=2,3,4,\ldots$ )
- We have to be very creative in labeling the rationals

# The Rational Numbers are Countably Infinite

- ullet Let us first deal with the positive rationals  $\mathbb{Q}^+$
- ullet Claim: There is an surjection f from  $\mathbb{N} \times \mathbb{N}$  to  $\mathbb{Q}^+$
- Proof: Let f map  $(m, n) \in \mathbb{N} \times \mathbb{N}$  to  $\frac{m}{n} \in \mathbb{Q}^+$
- ullet Every element of  $\mathbb{Q}^+$  can be put in the form  $rac{m}{n}$  by definition of  $\mathbb{Q}$
- $\frac{m}{n} = \frac{2m}{2n} = \frac{3m}{3n} = \dots$ , so f is a many-one mapping
- So it is enough to prove that  $\mathbb{N} \times \mathbb{N}$  is countably infinite (Why?)

# The Rational Numbers are Countably Infinite - 2

Claim:  $\mathbb{N} \times \mathbb{N}$  is countably infinite Proof: Use Cantor numbering

```
1/4 \rightarrow 1/5 \quad 1/6 \rightarrow 1/7 \quad 1/8 \rightarrow \cdots
                    2/6
              2/5
                           2/7
                    3/6
             4/5
       5/4
              5/5
6/3
        6/4
              6/5
                    6/6
7/3 7/4 7/5 7/6
 8/3
       8/4
              8/5
                    8/6
```

# The Rational Numbers are Countably Infinite - 3

- So we showed that  $\mathbb{Q}^+$  is countable. Next we argue that the positive integers have a bijection with the positive rationals, the negative integers to the negative rationals and zero maps to zero. So there is a bijection between  $\mathbb{Q}$  and  $\mathbb{Z}$ , and thus with  $\mathbb{N}$
- Note that the ordering of Q is not in increasing order or decreasing order of value
- In proofs, you CANNOT assume that an ordering has to be in increasing or decreasing order
- So cannot use ideas like "between any two rational numbers x, y, there exists a rational number 0.5(x+y)" to prove uncountability of  $\mathbb{Q}$