EECS 2001N : Introduction to the Theory of Computation

Suprakash Datta Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N Also on Moodle

Context Free Language Problems

• $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates } w \}$

•
$$E_{CFG} = \{ \langle G \rangle | G \text{ is a CFG with } L(G) = \emptyset \}$$

• $EQ_{CFG} = \{ \langle G, H \rangle | G, H \text{ are CFGs with } L(G) = L(H) \}$

Acceptance of Context Free Languages

Recall: Chomsky Normal Form

- A CFG G = (V, Σ, R, S) is in CNF if every rule is of the form A → BC, or A → x with variables A ∈ V and B, C ∈ V \{S}, and x ∈ Σ For the start variable S we also allow S → ε
- Chomsky NF grammars are easier to analyze
- The derivation $S \Rightarrow^* w$ requires 2|w|-1 steps (apart from $S \rightarrow \epsilon$)

Acceptance of Context Free Languages - 2

The language

 $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates } w \}$

is TM-decidable.

Proof: Perform the following algorithm:

- Check if G and w are proper, if not "reject"
- Rewrite G to G' in Chomsky normal form
- Take care of $w = \epsilon$ case via $S \to \epsilon$ check for G'
- List all G' derivations of length 2|w|-1
- Check if w occurs in this list: if so "accept"; if not "reject"

Emptiness of Context Free Languages

The language

$$E_{CFG} = \{ \langle G \rangle | G \text{ is a CFG with } L(G) = \emptyset \}$$

is TM-decidable.

Proof: Perform the following algorithm:

• Check if G is proper, if not "reject"

• Let
$$G = (V, \Sigma, R, S)$$
, define set $T = \Sigma$

• Repeat |V| times: Check all rules $B \to X_1 \dots X_k$ in RIf $B \notin T$ and $X_1 \dots X_k \in T^k$ then add B to T

• If $S \in T$ then "reject", otherwise "accept"

Equality of Context Free Languages

Is the language

 $EQ_{CFG} = \{ \langle G, H \rangle | G, H \text{ are CFG's with } L(G) = L(H) \}$

TM-decidable?

- For DFA's we could use the emptiness decision procedure to solve the equality problem
- For CFG's this is not possible because CFGs are not closed under complementation or intersection
- We suspect this problem is undecidable, but need machinery to **prove** this