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Universal Turing Machines

Turing Machines - Simulating FA

How can we show that TM’s can simulate DFA’s?

Custom designed TM

Generic TM
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Universal Turing Machines

Turing Machines - Simulating A Specific DFA

Intuitively, the states of the TM can be the same as those of the
FA

However, since the TM has a tape containing the input, we have
to make sure that the head moves to the right pointing to the
next input character at each step, updating states appropriately

The TM also has to sense end of the input (could be a blank, or
a $) and depending on the state of the DFA, move to qaccept or
qreject
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Universal Turing Machines

Turing Machines - Simulating Any DFA

Input: Description of DFA B and an input w , i.e.,
B = (Q,Σ, δ, q0,F ) and w ∈ Σ∗.
The TM performs the following steps:

Check if B and w are valid, if not: “reject”

Copy B to a tape, w to another

Simulate B on w . The head on the tape containing B points to
q ∈ Q, the state of the DFA, and the head on the tape
containing w points to i , i = 0, 1, .., |w |, the position on the
input.

While we increase i from 0 to |w |, we update q according to the
input letter i and the transition function value δ(q,wi)

If B accepts w : “accept”; otherwise “reject”
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Universal Turing Machines

Turing Machines - Simulating Other Machines

The previous proof was important for another reason, and we
will return to it

We can ask: what else can a TM simulate?

Very surprising answer: any TM

We will show that a TM can simulate a given TM on a given
input!

Is it weird for a TM to be an input to another TM?
No. A Java program to count the number of lines or characters
in a file can take a Java program as input.
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Universal Turing Machines

Universal Turing Machines

The input is a TM description and an input

Can we follow the same strategy as we did for simulating any
FA?

Yes!

Tape 1 has the machine description, tape 2 has the contents of
the tape of the input machine and tape 3 has the state of the
input machine

In a loop, until tape 3 has a halting state:
Scan tape 1 to find the correct transition, and update tapes 2
and 3
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Universal Turing Machines

Universal Turing Machines - Implications

This is the equivalent of writing “programs” to run on a general
purpose computing model

We can “construct” one TM, and every other TM can “run” on
it

From this point of view any TM is an “algorithm” that is
“implemented” on a universal TM

Recall Church-Turing Thesis: The intuitive notion of computing
and algorithms is captured by the Turing machine model
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Universal Turing Machines

Turing Machines - Implications on Mathematics

In 1900, David Hilbert (1862–1943) proposed his Mathematical
Problems (23 of them)

Hilbert’s 10th problem: Determination of the solvability of a
Diophantine equation
Given a Diophantine equation with any number of unknown
quantities and with integer coefficients: To devise a process
according to which it can be determined by a finite number of
operations whether the equation is solvable in integers

Let P(x1, . . . , xk) be a polynomial in k variables with integral
coefficients. Does P have an integral root (x1, . . . , xk) ∈ Zk?
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Universal Turing Machines

Turing Machines - Implications on Mathematics

Examples:
P(x , y , z) = 6x3yz + 3xy 2–x3–10 has integral root
(x , y , z) = (5, 3, 0)
P(x , y) = 21x2–81xy + 1 does not have an integral root

Hilbert’s “... a process according to which it can be determined
by a finite number of operations ...” needed to be defined in a
proper way

Matijasevic proved that Hilbert’s 10th problem is unsolvable in
1970
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Turing Machine: Decidability

Decidability

We are now ready to tackle the question: What can
computers do and what can they not?

We do this by considering the question: Which languages are
TM-decidable, TM-recognizable, or neither?

Assuming the Church-Turing thesis, these are fundamental
properties of the languages (problems)
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Turing Machine: Decidability

Describing TM’s

Three Levels of Describing algorithms:

formal (state diagrams, CFGs, etc)

implementation (pseudo-code)

high-level (coherent and clear English)

Describing input/output format: TM’s allow only strings in Σ∗ as
input/output. If our inputs X and Y are of another form (graph,
Turing machine, polynomial), then we use 〈X ,Y 〉 to denote “some
kind of encoding in Σ∗”
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Turing Machine: Decidability

Examples of Decidable Problems

First we look at several decidable problems

Then we develop the tools to prove that some problems are
provably not decidable
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Turing Machine: Decidability

Decidability of Regular Languages - DFA

We showed earlier that a TM can simulate a DFA

Another way to look at this is:
The acceptance problem for DFA is

ADFA = {〈B ,w〉|B is a DFA that accepts w}

ADFA is a TM-decidable language

Note that this language deals with all possible DFAs and inputs
w , not a specific instance
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Turing Machine: Decidability

Decidability of Regular Languages - NFA

The acceptance problem for NFA is

ANFA = {〈B ,w〉|B is a NFA that accepts w}

ANFA is a TM-decidable language

Use our earlier results on finite automata to transform the NFA
B into an equivalent DFA C . We saw an algorithm to do this,
and that algorithm can be implemented on a TM

Use the TM C of the previous slide on 〈C ,w〉

This can all be done with one big, combined TM

Note: Similar reasoning can be done for regular expressions
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Turing Machine: Decidability

Emptiness-testing of Regular Languages

Another problem relating to DFAs is the emptiness problem:

EDFA = {〈A〉|A is a DFA with L(A) = ∅}

How can we decide this language? This language concerns the
behavior of the DFA A on all possible strings

Idea: check if an accept state of A is reachable from the start
state of A
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Turing Machine: Decidability

Emptiness-testing of Regular Languages - 2

Algorithm for EDFA on input A = (Q,Σ, δ, q0,F ):

If A is not a proper DFA: “reject”

Mark the start state of A, q0

Repeat until no new states are marked:
Mark any states that can be δ-reached from any state that is
already marked

If no accept state is marked, “accept”;
else “reject”

S. Datta (York Univ.) EECS 2001N W 2019-20 16 / 18



Turing Machine: Decidability

Equivalence-testing of DFA

EQDFA = {〈A,B〉|A,B are DFA with L(A) = L(B)}

Idea: Look at the symmetric difference between the two
languages (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

This expression uses standard DFA transformations: union,
intersection, complement
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Turing Machine: Decidability

Equivalence-testing of DFA - 2

Algorithm for EQDFA on input 〈A,B〉:
If A or B are not proper DFA: “reject”

Construct a third DFA C that accepts the language
(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)) (using standard transformations)

Decide with the Emptiness-testing TM o to check whether or
not C ∈ EDFA

If C ∈ EDFA then “accept”
If C 6∈ EDFA then “reject”
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