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Turing Machines - Simulating FA

How can we show that TM's can simulate DFA's?
@ Custom designed TM

@ Generic TM
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Turing Machines - Simulating A Specific DFA

@ Intuitively, the states of the TM can be the same as those of the
FA

@ However, since the TM has a tape containing the input, we have
to make sure that the head moves to the right pointing to the
next input character at each step, updating states appropriately

@ The TM also has to sense end of the input (could be a blank, or
a $) and depending on the state of the DFA, move to Gaccept OF

Qreject
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Turing Machines - Simulating Any DFA

Input: Description of DFA B and an input w, i.e.,
B=(Q,%X,d,q0,F)and w e L*.
The TM performs the following steps:

@ Check if B and w are valid, if not: “reject”
e Copy B to a tape, w to another

@ Simulate B on w. The head on the tape containing B points to
g € Q, the state of the DFA, and the head on the tape
containing w points to i, i = 0,1, ... |w|, the position on the
input.

@ While we increase i from 0 to |w/|, we update g according to the
input letter ; and the transition function value §(q, w;)

o If B accepts w: “accept”; otherwise “reject”
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Turing Machines - Simulating Other Machines

@ The previous proof was important for another reason, and we
will return to it

@ We can ask: what else can a TM simulate?

@ Very surprising answer: any TM

@ We will show that a TM can simulate a given TM on a given
input!

@ Is it weird for a TM to be an input to another TM?
No. A Java program to count the number of lines or characters
in a file can take a Java program as input.
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Universal Turing Machines

@ The input is a TM description and an input

@ Can we follow the same strategy as we did for simulating any
FA?
o Yes!

e Tape 1 has the machine description, tape 2 has the contents of
the tape of the input machine and tape 3 has the state of the
input machine

e In a loop, until tape 3 has a halting state:

Scan tape 1 to find the correct transition, and update tapes 2
and 3
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Universal Turing Machines - Implications

@ This is the equivalent of writing “programs” to run on a general
purpose computing model

@ We can “construct” one TM, and every other TM can “run” on
it

@ From this point of view any TM is an “algorithm” that is
“implemented” on a universal TM

@ Recall Church-Turing Thesis: The intuitive notion of computing
and algorithms is captured by the Turing machine model
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Universal Turing Machines

Turing Machines - Implications on Mathematics

@ In 1900, David Hilbert (1862-1943) proposed his Mathematical
Problems (23 of them)

o Hilbert's 10th problem: Determination of the solvability of a
Diophantine equation
Given a Diophantine equation with any number of unknown
quantities and with integer coefficients: To devise a process
according to which it can be determined by a finite number of
operations whether the equation is solvable in integers

@ Let P(xy,...,xx) be a polynomial in k variables with integral
coefficients. Does P have an integral root (xi,...,x) € Z*?
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Turing Machines - Implications on Mathematics

@ Examples:
P(x,y,z) = 6x3yz + 3xy?>-x3-10 has integral root
(X7}/az) = (57370)
P(x,y) = 21x?>-81xy + 1 does not have an integral root

@ Hilbert's “... a process according to which it can be determined
by a finite number of operations ..." needed to be defined in a
proper way

@ Matijasevic proved that Hilbert's 10th problem is unsolvable in
1970
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Turing Machine: Decidability

Decidability

@ We are now ready to tackle the question: What can
computers do and what can they not?

@ We do this by considering the question: Which languages are
TM-decidable, TM-recognizable, or neither?

@ Assuming the Church-Turing thesis, these are fundamental
properties of the languages (problems)
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Turing Machine: Decidability

Describing TM's

Three Levels of Describing algorithms:

o formal (state diagrams, CFGs, etc)
@ implementation (pseudo-code)

@ high-level (coherent and clear English)

Describing input/output format: TM's allow only strings in * as
input/output. If our inputs X and Y are of another form (graph,

Turing machine, polynomial), then we use (X, Y) to denote “some
kind of encoding in *"
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Turing Machine: Decidability

Examples of Decidable Problems

@ First we look at several decidable problems

@ Then we develop the tools to prove that some problems are
provably not decidable

S. Datta (York Univ.) EECS 2001IN W 2019-20 12/18



Turing Machine: Decidability

Decidability of Regular Languages - DFA

@ We showed earlier that a TM can simulate a DFA

@ Another way to look at this is:
The acceptance problem for DFA is

Apra = {(B, w)|B is a DFA that accepts w}

Apra is a TM-decidable language

o Note that this language deals with all possible DFAs and inputs
w, not a specific instance
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Turing Machine: Decidability

Decidability of Regular Languages - NFA

The acceptance problem for NFA is

Anea = {(B, w)|B is a NFA that accepts w}

Anra is a TM-decidable language

@ Use our earlier results on finite automata to transform the NFA
B into an equivalent DFA C. We saw an algorithm to do this,
and that algorithm can be implemented on a TM

@ Use the TM C of the previous slide on (C, w)

@ This can all be done with one big, combined TM
Note: Similar reasoning can be done for regular expressions
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Turing Machine: Decidability

Emptiness-testing of Regular Languages

Another problem relating to DFAs is the emptiness problem:

@ How can we decide this language? This language concerns the
behavior of the DFA A on all possible strings

@ ldea: check if an accept state of A is reachable from the start
state of A
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Turing Machine: Decidability

Emptiness-testing of Regular Languages - 2
Algorithm for Epga on input A= (Q, X, 0, qo, F):

o If Ais not a proper DFA: “reject”

@ Mark the start state of A, qo

@ Repeat until no new states are marked:
Mark any states that can be d-reached from any state that is
already marked

@ If no accept state is marked, “accept”;
else “reject”
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Turing Machine: Decidability

Equivalence-testing of DFA

EQpra = {(A, B)|A, B are DFA with L(A) = L(B)}

@ ldea: Look at the symmetric difference between the two
languages (L(A) N L(B)) U (L(A) N L(B))

@ This expression uses standard DFA transformations: union,
intersection, complement
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Turing Machine: Decidability

Equivalence-testing of DFA - 2

Algorithm for EQpga on input (A, B):
o If A or B are not proper DFA: “reject”

@ Construct a third DFA C that accepts the language

(L(A) N L(B)) U (L(A) N L(B)) (using standard transformations)

@ Decide with the Emptiness-testing TM o to check whether or
not C € Epra
If C € Epga then “accept”
If C & Eppa then “reject”
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