
EECS 2001N : Introduction to the Theory of

Computation

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N
Also on Moodle

S. Datta (York Univ.) EECS 2001N W 2019-20 1 / 13

http://www.eecs.yorku.ca/course/2001N

Turing Machine: Decidability vs Recognizability

Turing Machines - Decidability

A language L = L(M) is decided by the TM M if on every
input w , the TM finishes in a halting configuration.
That is: qaccept for w ∈ L and qreject for all w 6∈ L.

A language L is Turing-decidable if and only if there is a TM M
that decides L

Also called: a recursive language

S. Datta (York Univ.) EECS 2001N W 2019-20 2 / 13

Turing Machine: Decidability vs Recognizability

Turing Machines - Recognizability

A language L = L(M) is recognized by the TM M if on every
input w ∈ L, the TM finishes in the halting configuration qaccept

On an input w 6∈ L, the machine M can halt in the rejecting
state qreject , or it can ‘loop’ indefinitely

A language L is Turing-recognizable if and only if there is a TM
M such that L = L(M)
Recall: The language that consists of all inputs that are
accepted by a TM M is denoted by L(M)

Also called: a recursively enumerable language

S. Datta (York Univ.) EECS 2001N W 2019-20 3 / 13

Turing Machine Variants

Turing Machines - Variants

Multiple tapes

2-way infinite tapes

Non-deterministic TM’s

S. Datta (York Univ.) EECS 2001N W 2019-20 4 / 13

Turing Machine Variants

Multi-tape Turing Machines (Ch 4.3)

Theorem 4.3.1: Let k ≥ 1 be an integer. Any k-tape Turing machine
can be converted to an equivalent one-tape Turing machine.

Proving and understanding these kinds of robustness results is
essential for appreciating the power of the Turing Machine model

From this theorem it follows that:
A language L is TM-recognizable if and only if some multi-tape
TM recognizes L.

S. Datta (York Univ.) EECS 2001N W 2019-20 5 / 13

Turing Machine Variants

Proof of Theorem 4.3.1

Take a 2-tape TM M and construct an equivalent one-tape TM
N
“N can simulate M”

Tape alphabet of N : Γ ∪ {ẋ |x ∈ Γ} ∪ {#}

Idea: the contents of the two tapes will be maintained on one
tape separated by # and the dotted version of a character will
be used to indicate the location of the head

S. Datta (York Univ.) EECS 2001N W 2019-20 6 / 13

Turing Machine Variants

Proof of Theorem 4.3.1 - contd.

N simulates the computation of M in each step

At the start of the step, the tape head of N is on the leftmost
symbol #

N “remembers” the state of M in its state

In each step, N moves right until it has read both dotted symbols

The second and then the first dotted symbol is changed as M
would change them

In either case above the contents of the tape may have to be
shifted

Finally, N remembers the new state of M and moves to the
leftmost symbol #

S. Datta (York Univ.) EECS 2001N W 2019-20 7 / 13

Turing Machine Variants

2-way Infinite Tape Turing Machines

For every 2-way infinite tape TM M , there is a 2-tape TM M ′

such that L(M) = L(M)

Suppose the cells are numbered 0,1,2,.... and -1,-2,....

Idea: Store the contents of cell 0 and everything to its right on
the first tape of M ′ and everything to the left of cell 0 on the
second tape, and simulate the computation of M as usual

S. Datta (York Univ.) EECS 2001N W 2019-20 8 / 13

Turing Machine Variants

Non-deterministic Turing Machines

A Non-deterministic one-tape Turing Machine M is defined by a
7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject):

finite set of states Q

finite input alphabet Σ

finite tape alphabet Γ

start state q0 ∈ Q

accept state qaccept ∈ Q

reject state qreject ∈ Q

transition function δ : Q × Γ→ P(Q × Γ× {L,R ,N})

S. Datta (York Univ.) EECS 2001N W 2019-20 9 / 13

Turing Machine Variants

Non-deterministic Turing Machines - 2

Just like multi-tape TM’s, nondeterministic TM’s are not more
powerful than simple TMs

Every nondeterministic TM has an equivalent 3-tape TM, which
in turn has an equivalent 1-tape TM

Hence: “A language L is recognizable if and only if some
nondeterministic TM recognizes it.”

The Turing machine model is extremely robust!

S. Datta (York Univ.) EECS 2001N W 2019-20 10 / 13

Turing Machine Variants

Non-deterministic Turing Machines - 3

A non-deterministic TM’s computation may be thought of as a
tree of configurations rather than a path

If there is (at least) one accepting leaf in this tree, then the TM
accepts

We have to traverse this tree using a deterministic TM

Bad idea: “depth first” exploration. The TM may explore
never-halting paths

Good idea: “breadth first” exploration. For time steps 1,2,..., we
list all possible configurations of the non-deterministic TM. The
simulating TM accepts when it reaches an accepting
configuration

S. Datta (York Univ.) EECS 2001N W 2019-20 11 / 13

Turing Machine Variants

Non-deterministic Turing Machines - 4

Let M be the non-deterministic TM on input w

The simulating TM uses three tapes:
T1 contains the input w
T2 the tape content of M on w at a node
T3 describes a node in the tree of M on w

Inititally, T1 contains w, T2 and T3 are empty

Simulate M on w via the deterministic path to the node of tape
3.
If the node accepts, “accept”

Increase the node value on T3, go to previous step

S. Datta (York Univ.) EECS 2001N W 2019-20 12 / 13

The Church Turing Thesis

The Church Turing Thesis

The Church-Turing thesis marks the end of a long sequence of
developments that concern the notions of “way-of-calculating”,
“procedure”, “solving”, “algorithm”

Theorem 4.4.1 The following computation models are equivalent,
i.e., any one of them can be converted to any other one:

1 One-tape Turing machines
2 k-tape Turing machines, for any k ≥ 1
3 Non-deterministic Turing machines
4 Java programs
5 C++ programs
6 Python programs

S. Datta (York Univ.) EECS 2001N W 2019-20 13 / 13

	Turing Machine: Decidability vs Recognizability
	Turing Machine Variants
	The Church Turing Thesis

