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Turing Machine: Decidability vs Recognizability

Turing Machines - Decidability

A language L = L(M) is decided by the TM M if on every
input w , the TM finishes in a halting configuration.
That is: qaccept for w ∈ L and qreject for all w 6∈ L.

A language L is Turing-decidable if and only if there is a TM M
that decides L

Also called: a recursive language
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Turing Machine: Decidability vs Recognizability

Turing Machines - Recognizability

A language L = L(M) is recognized by the TM M if on every
input w ∈ L, the TM finishes in the halting configuration qaccept

On an input w 6∈ L, the machine M can halt in the rejecting
state qreject , or it can ‘loop’ indefinitely

A language L is Turing-recognizable if and only if there is a TM
M such that L = L(M)
Recall: The language that consists of all inputs that are
accepted by a TM M is denoted by L(M)

Also called: a recursively enumerable language
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Turing Machine Variants

Turing Machines - Variants

Multiple tapes

2-way infinite tapes

Non-deterministic TM’s
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Turing Machine Variants

Multi-tape Turing Machines (Ch 4.3)

Theorem 4.3.1: Let k ≥ 1 be an integer. Any k-tape Turing machine
can be converted to an equivalent one-tape Turing machine.

Proving and understanding these kinds of robustness results is
essential for appreciating the power of the Turing Machine model

From this theorem it follows that:
A language L is TM-recognizable if and only if some multi-tape
TM recognizes L.
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Turing Machine Variants

Proof of Theorem 4.3.1

Take a 2-tape TM M and construct an equivalent one-tape TM
N
“N can simulate M”

Tape alphabet of N : Γ ∪ {ẋ |x ∈ Γ} ∪ {#}

Idea: the contents of the two tapes will be maintained on one
tape separated by # and the dotted version of a character will
be used to indicate the location of the head
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Turing Machine Variants

Proof of Theorem 4.3.1 - contd.

N simulates the computation of M in each step

At the start of the step, the tape head of N is on the leftmost
symbol #

N “remembers” the state of M in its state

In each step, N moves right until it has read both dotted symbols

The second and then the first dotted symbol is changed as M
would change them

In either case above the contents of the tape may have to be
shifted

Finally, N remembers the new state of M and moves to the
leftmost symbol #
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Turing Machine Variants

2-way Infinite Tape Turing Machines

For every 2-way infinite tape TM M , there is a 2-tape TM M ′

such that L(M) = L(M)

Suppose the cells are numbered 0,1,2,.... and -1,-2,....

Idea: Store the contents of cell 0 and everything to its right on
the first tape of M ′ and everything to the left of cell 0 on the
second tape, and simulate the computation of M as usual
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Turing Machine Variants

Non-deterministic Turing Machines

A Non-deterministic one-tape Turing Machine M is defined by a
7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject):

finite set of states Q

finite input alphabet Σ

finite tape alphabet Γ

start state q0 ∈ Q

accept state qaccept ∈ Q

reject state qreject ∈ Q

transition function δ : Q × Γ→ P(Q × Γ× {L,R ,N})
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Turing Machine Variants

Non-deterministic Turing Machines - 2

Just like multi-tape TM’s, nondeterministic TM’s are not more
powerful than simple TMs

Every nondeterministic TM has an equivalent 3-tape TM, which
in turn has an equivalent 1-tape TM

Hence: “A language L is recognizable if and only if some
nondeterministic TM recognizes it.”

The Turing machine model is extremely robust!
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Turing Machine Variants

Non-deterministic Turing Machines - 3

A non-deterministic TM’s computation may be thought of as a
tree of configurations rather than a path

If there is (at least) one accepting leaf in this tree, then the TM
accepts

We have to traverse this tree using a deterministic TM

Bad idea: “depth first” exploration. The TM may explore
never-halting paths

Good idea: “breadth first” exploration. For time steps 1,2,..., we
list all possible configurations of the non-deterministic TM. The
simulating TM accepts when it reaches an accepting
configuration
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Turing Machine Variants

Non-deterministic Turing Machines - 4

Let M be the non-deterministic TM on input w

The simulating TM uses three tapes:
T1 contains the input w
T2 the tape content of M on w at a node
T3 describes a node in the tree of M on w

Inititally, T1 contains w, T2 and T3 are empty

Simulate M on w via the deterministic path to the node of tape
3.
If the node accepts, “accept”

Increase the node value on T3, go to previous step
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The Church Turing Thesis

The Church Turing Thesis

The Church-Turing thesis marks the end of a long sequence of
developments that concern the notions of “way-of-calculating”,
“procedure”, “solving”, “algorithm”

Theorem 4.4.1 The following computation models are equivalent,
i.e., any one of them can be converted to any other one:

1 One-tape Turing machines
2 k-tape Turing machines, for any k ≥ 1
3 Non-deterministic Turing machines
4 Java programs
5 C++ programs
6 Python programs
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