EECS 2001N : Introduction to the Theory of Computation

Suprakash Datta Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N Also on Moodle

S. Datta (York Univ.)

EECS 2001N W 2020

Review of Some Mathematics

Sets

• Functions

• Graphs

• Recursive definitions

Sets

- Definition, Notation
- Common sets: real numbers (\mathbb{R}), integers (\mathbb{Z}), natural numbers (\mathbb{N})

•
$$\mathbb{R}^+ = \{x | x \in \mathbb{R}, x > 0\}$$

- $L_{prime} = \{x | x \in \mathbb{N}, x \text{ is prime}\}$
- Operations: Union $(A \cup B)$, Intersection $(A \cap B)$, Complement (A^c)
- Cardinality: |A|

Sets - Examples and Properties

- Cartesian Product: $A \times B = \{(a, b) | a \in A, b \in B\}$
- If $\Sigma = \{0,1\}$, then $\Sigma \times \Sigma = \{(0,0), (0,1), (1,0), (1,1)\}$
- Power set: set of all subsets of a set A. $\mathcal{P}(A) = \{S | S \subseteq A\}$
- If $A = \{x, y\}$, then $\mathcal{P}(A) = \{\{\}, \{x\}, \{y\}, \{x, y\}\}$

• For finite sets, $|\mathcal{P}(A)| = 2^{|A|}$, $|A \times A| = |A|^2$

Functions

• $f: A \rightarrow C$, for all $a \in A, f(a) \in C$

• $f: A \times B \rightarrow C$, for all $a \in A, b \in B, f(a, b) \in C$

• Examples: $f : \mathbb{N} \to \mathbb{N}, f(a) = 3a + 1$ $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(a, b) = 3a + 2b + ab + 1$

Functions: Representation

- Formula: $f : \mathbb{N} \to \mathbb{N}$, f(a) = 3a + 1
- Table: $g: \{a, b\} \times \{0, 1\} \rightarrow \{a, b\}$

- List (f): {(1,4), (2,7), (3,10), (4,13), ...}
 Each pair: first element is the input, second element is the output
- List (g): {(a, 0, a), (a, 1, b), (b, 0, b), (b, 1, a)}
 Each triple: first 2 elements are inputs, last element is the output

Graphs

- Nodes and Edges, , weights
- Undirected, directed
- Cycles, trees
- Connected
- New: Self-loops

Recursive definitions - 1

Sequences, E.g., Fibonacci sequence:

• $f_1 = f_2 = 1$

• for
$$n > 2$$
, $f_n = f_{n_1} + f_{n-2}$

- Structures, E.g., Binary trees
 - an empty tree is a binary tree
 - a node pointing to two binary trees, one its left child and the other one its right child, is a binary tree
- Sets, Example: Even natural numbers N_e.
 - $0 \in N_e$
 - $\forall n \in N_e, n+2 \in N_e$
 - No other numbers are in N_e

Recursive definitions - 2

Recursively defined sets of binary strings:

- Example 1: The set of palindromic strings P
 - $\epsilon \in P$
 - $0 \in P, 1 \in P$
 - $\forall x \in P, 0x0 \in P, 1x1 \in P$
 - No other strings are in P
- Example 2: The set *E* of all binary strings with an equal number of zeroes and ones.
 - $\epsilon \in E$
 - for every x, y in E, 0x1y and 1x0y are both in E
 - nothing else is in E.

Recursive definitions - Exercises

• Recursively define the following:

- The set of odd natural numbers
- The sequence of powers of 3 (1, 3, 9, 27, 81, ...)

The set of all strings over {0,1} that have exactly one zero
What set L does the following definition produce? a ∈ L; for any x ∈ L, ax, bx, xb are in L. Nothing is in L unless it can be obtained by the previous statements

• Prove that Example 2 on the previous slide is correct

Some more material for your review

Review these logic slides on your own.

Logic Review - 1

- Boolean Logic: The only 'truth values' are True, False
- Operations: \lor, \land, \neg
- Quantifiers: \forall, \exists
- statement: Suppose $x \in \mathbb{Z}, y \in \mathbb{Z}$, then $\forall x \exists y(y > x)$ "for any integer, there exists a larger integer"
- Logical equivalence: $a \rightarrow b$ "is the same as" (is logically equivalent to) $\neg a \lor b$
- Bidirectional Equivalence: $a \leftrightarrow b$ is logically equivalent to $(a \rightarrow b) \land (b \rightarrow a)$

Logic Review - 2

Contrapositive and converse:

• the contrapositive of $a \rightarrow b$ is $\neg b \rightarrow \neg a$

• the converse of $a \rightarrow b$ is $b \rightarrow a$

• Any statement is logically equivalent to its contrapositive, but not to its converse.

Logic Review - 3

Subtleties of quantifiers

 Negation of statements: ¬(a → b) = ? ¬(∀x∃y(y > x)) ≡ ∃x∀y(y ≤ x) LHS: negation of "for every integer, there exists a larger integer",

RHS: "there exists an integer that is larger than every integer"

∀x∃yP(x, y) is not the same as ∃y∀xP(y, x) Consider P(y, x) : x ≤ y. ∀x∃y(x ≤ y) is TRUE over Z (set y = x + 1) ∃y∀x(x ≤ y) is FALSE over Z (there is no largest number in Z)