EECS 2001N : Introduction to the Theory of Computation

Suprakash Datta
 Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N
Also on Moodle

Terminology for Languages

- Alphabet: a finite, non-empty set of characters, e.g., $B=\{0,1\}$. Alphabets are generally denoted by the symbols Σ, Γ and characters are usually denoted by lowercase characters
- Strings: a concatenation of some (possibly zero) characters, e.g., 0111 is a string "over" (using the characters of) B
- Words: synonym for strings of alphabetical characters
- Languages: a set of words

Strings/Words

- Defined over an alphabet Σ
- Is a finite sequence of symbols from Σ
- Length of string $w(|w|)$: length of sequence
- ϵ : the empty string is the unique string with zero length
- Concatenation of w_{1} and w_{2} (written $w_{1} w_{2}$) - copy of w_{1} followed by copy of w_{2}
- Notation: $x^{k}=x x x \ldots x$ (k times)
- w^{R} : reverse of string w; e.g. if $w=a b c d$ then $w^{R}=d c b a$
- Lexicographic ordering: definition

Languages

- A language over Σ is a set of strings over Σ
- Typical examples $(\Sigma=\{0,1\})$:
- $L_{1}=$ the set of finite bit strings
- $L_{2}=\{x \mid x$ is a bit string with two zeros $\}$
- $L_{3}=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$
- $L_{4}=\left\{1^{n} \mid n\right.$ is prime $\}$

A Special Language

- Definition: Σ^{*} is the set of all strings over Σ
- Any language L over Σ is a subset of $\Sigma^{*}\left(L \subseteq \Sigma^{*}\right)$
- Recursive definition of Σ^{*} :
- $\epsilon \in \Sigma^{*}$
- $\forall a \in \Sigma, \forall x \in \Sigma^{*}, x a \in \Sigma^{*}$
- No other strings are in Σ^{*}

Exercises

- Suppose $\Sigma=\{a, b\}$. Define L recursively as
- $a \in L$
- $\forall x \in L, a x \in L$
- $\forall x, y \in L, b x y \in L, x b y \in L$ and $x y b \in L$
- No other strings are in L
- Prove that L is the language of strings with more a's than b's.
- Does L change if you remove the first bullet point?
- Does L change if you add a rule $\epsilon \in Ł$?

I/O vs Decision Problems

- Input/Output problems: Given appropriate inputs, compute output(s)
- Decision Problems: a problem whose output is YES/NO (or $1 / 0$) Examples
- Input/output problem: find the mean of n integers Decision Problem: Is the mean of the n integers equal to k ?
- Input/output problem: compute the cost of the shortest path between nodes u, v in a graph G
Decision Problem: Is the cost of the shortest path between nodes u, v in a graph G equal to k ?
Note: You can solve the decision problem if and only if you can solve the input/output problem (Why?)

Languages and Decision Problems

- Decision Problem: output is YES/NO (or $1 / 0$)
- Language: set of all inputs where output is yes
- So solving the decision problem is equivalent to checking if an input belongs in the language
- E.g.: Suppose we are given a method IsEven() that checks if a positive integer is even This solves the DECISION problem of checking if a given positive integer is an even number Define the language $L_{\text {even }}=\{2,4,6, \ldots\}$. A number is even if and only of it is in $L_{\text {even }}$

More Examples

- Even string length
- I/O Problem:

Input: String w
Output: length of string w if w has even length, -1 otherwise

- Decision Problem: Does w have even length?

Input: String w
Output: Yes, if $|w|$ is even, no otherwise

- Language: Set of all strings of even length
- Code Reachability
- I/O Problem:

Input: Java computer code
Output: Lines of unreachable code.

- Decision Problem: Input: Java computer code and line number Output: Yes, if the line is reachable for some input, no otherwise
- Language: Set of strings denoting Java code and reachable lines.

Relationship to Functions

- Use the set of k-tuples view of functions from before
- A function is a set of k-tuples (words) and therefore a language
- E.g.: All-pairs shortest paths in graphs - the set of triples of 2 nodes and the cost of the shortest paths between them is a set of paths (words) and therefore a language

Solving Problems: Multiple Views

- Normal (I/O) view: Given some input, compute the output
- Decision view: Given some input and possible output, return YES if the output given is correct and NO otherwise
- Language view: Given some word (tuple containing input and output), determine if it is part of the language corresponding to the problem
- Machine view: Given some word (tuple containing input and output), the machine indicates if it is part of the language corresponding to the problem or not
Terminology: Machine "decides" the language, by "accepting" and "rejecting" inputs

