EECS 2001N : Introduction to the Theory of Computation

Suprakash Datta Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N Also on Moodle

S. Datta (York Univ.)

EECS 2001N W 2019

The Big Question

• Are there languages that are not regular?

• How can we show a language is NOT regular?

An Example Problem

 $L = \{0^n 1^n | n \in \mathbb{N}\}$

- 'Playing around' with FA convinces you that the 'finiteness' of FA is problematic for "all n ∈ N"
- The problem occurs between the 0^n and the 1^n
- Informal: the memory of a FA is limited by the the number of states $\left|Q\right|$

Proving Non-regularity

• Prove a general statement - no DFA exists for a given problem

• Cannot assume an automaton structure or a specific strategy

• Need an argument that holds for all DFA's

Repeating DFA Paths

- Consider an accepting DFA M with size |Q|
- On a string of length p, p + 1 states get visited
- For an accepting path p ≥ |Q|, there must be a j such that the computational path looks like: q₁,..., q_j,..., q_j,..., q_k
- The action of the DFA in q_j, \ldots, q_j is always the same. If we repeat (or ignore) the q_j, \ldots, q_j part, the new path will again be an accepting path

Line of Reasoning

Proof by contradiction:

- Assume that *L* is regular
- Hence, there is a DFA *M* that recognizes *L*
- For strings of length > |Q| the DFA M has to 'repeat itself'
- Show that *M* will accept strings outside *L*

• Conclude that the assumption was wrong, so *L* is not regular Note that we use the simple DFA, not the more elaborate (but equivalent) NFA or GNFA

Pumping Lemma

For every regular language *L*, there is a **pumping length** *p*, such that for any string $s \in L$ and $|s| \ge p$, we can write s = xyz with • $xy^i z \in L$ for every $i \in \{0, 1, 2, ...\}$

2
$$|y| \ge 1$$

3 $|xy| \leq p$

Note that:

(1) implies that $xz \in L$.

(2) says that y cannot be the empty string ϵ .

(3) is not always used

Formal Proof of the Pumping Lemma

• Let
$$M = (Q, \Sigma, \delta, q_1, F)$$
 with $Q = \{q_1, \dots, q_p\}$

• Let $s = s_1 \dots s_n \in L(M)$ with $|s| = n \ge p$

- Computational path of M on s is the sequence r_1, \ldots, r_{n+1} , with each $r_i \in Q$, and with $r_1 = q_1$, $r_{n+1} \in F$ and $r_{t+1} = \delta(r_t, s_t)$ for $1 \le t \le n$
- When DFA *M* reads *s*, it visits the states *r*₁,..., *r*_{n+1}, and since *s* ∈ *L*(*M*), *r*_{n+1} ∈ *F*
- Because $n + 1 \ge p + 1 > p$, there exist j, ℓ such that $r_j = r_\ell$ (with $j < \ell$ and $\ell \le p + 1$)

Formal Proof of the Pumping Lemma

- Let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_{n+1}$. x takes M from $q_1 = r_1$ to r_j , y takes M from r_j to r_j , and z takes M from r_j to $r_{n+1} \in F$
- As a result: $xy^i z$ takes M from q_1 to $r_{n+1} \in F$ $(i \ge 0)$

Pumping Lemma-based Proof: Example 1

$$B = \{0^n 1^n | n \in \{0, 1, \ldots\}\}$$

- Assume that *B* defined above is regular
- Let p be the pumping length, and $s = 0^p 1^p \in B$
- P.L.: There exists $s = xyz = 0^{p}1^{p}$, with $xy^{i}z \in B$ for all $i \ge 0$
- Three options for y:

•
$$y = 0^k$$
, hence $xyyz = 0^{p+k}1^p
ot\in B$

- $y = 1^k$ hence $xyyz = 0^p 1^{k+p} \notin B$
- $y = 0^k 1^m$, hence $xyyz = 0^p 1^m 0^k 1^p \notin B$
- Conclusion: The pumping lemma does not hold, the language *B* is not regular.

Pumping Lemma-based Proof: Example 2

$$C = \{ww | w \in \{0, 1\}^*\}$$

- Let p be the pumping length, and take $s = 0^p 10^p 1 \in B$
- and take $s = 0^p 10^p 1$
- Let $s = xyz = 0^p 10^p 1$ with condition 3) $|xy| \le p$
- Only one option: $y = 0^k$, so $xyyz = 0^{p+k}10^p1 \notin B$
- Without (3) this would have been a pain.

Intersecting Regular Languages

 $C = \{w | w \in \{0,1\}^*, w \text{ has equal numbers of } 0, 1\}$

- Using the Pumping Lemma is not easy
- Idea: If C is regular and F is regular, then the intersection $C \cap F$ has to be regular as well
- Assume that C is regular
- Take the regular language $F = \{0^n 1^m | n, m \in \mathbb{N}\}$, then the intersection is $C \cap F = \{0^n 1^n | n \in \mathbb{N}\}$
- But we know that $C \cap F$ is not regular
- Conclusion: C is not regular

Example of Pumping Down

$$E = \{0^i 1^j | i, j \in \mathbb{N}, i \ge j\}$$

- Problem: 'pumping up' $s = 0^{p}1^{p}$ with $y = 0^{k}$ gives $xyyz = 0^{p+k}1^{p}$, $xy^{3}z = 0^{p+2k}1^{p}$, which are all in E (hence do not give contradictions)
- Solution: pump down to $xz = 0^{p-k}1^p$
- Overall for $s = xyz = 0^{p}1^{p}$ (recall $|xy| \le p$): $y = 0^{k}$, hence $xz = 0^{p-k}1^{p} \notin E$
- Contradiction: E is not regular

Pumping Lemma Usage: Summary

- You are given a pumping number
- You choose a string s
- There exist x, y, z (satisfying some criteria)
- You choose *i* in *xyⁱz*, and show it violates criterion of set for that *i*
- Now you can conclude that the language is not regular Note: There are other, less general, less popular techniques for showing a language is not regular