
EECS 2001N : Introduction to the Theory of

Computation

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N
Also on Moodle

S. Datta (York Univ.) EECS 2001N W 2019 1 / 26

http://www.eecs.yorku.ca/course/2001N

The Big Question

The Big Question

Note that

NFA can solve every problem that DFA can (DFA are also NFA)

Can DFA solve every problem that NFA can?

In other words: Are NFA more powerful than DFA?

S. Datta (York Univ.) EECS 2001N W 2019 2 / 26

The Big Question

The Surprising Answer

We will prove that

every NFA is equivalent to a DFA (with upto exponentially more
states)

Non-determinism does not help FA’s to recognize more
languages!

NFAs recognize regular languages

Corollary: DFAs and NFAs can be used interchangeably to solve
problems or study properties of regular languages

S. Datta (York Univ.) EECS 2001N W 2019 3 / 26

The Big Question

Terminology: ε-closure

Let N = (Q,Σ, δ, q0,F) be any NFA

Consider any set R ⊆ Q

Define E (R) = {q|q can be reached from a state in R by
following 0 or more ε-transitions}

E (R) is the ε- closure of R under ε-transitions

S. Datta (York Univ.) EECS 2001N W 2019 4 / 26

The Big Question

Equivalence of DFA, NFA

Statement: For all languages L ⊆ Σ∗,
L = L(N) for some NFA N if and only if L = L(M) for some
DFA M

One direction is easy:
A DFA M is also a NFA N . So N does not have to be
“constructed” from M

The other direction: Construct M from N

S. Datta (York Univ.) EECS 2001N W 2019 5 / 26

The Big Question

Equivalence of DFA, NFA - A Special Case

Given N = (Q,Σ, δ, q0,F), construct M = (Q ′,Σ, δ′, q′0,F
′) so that

for any w ∈ Σ∗, M accepts w if and only if N accepts w .
First a special case: Assume that NFA N has no ε-transitions

Need to keep track of each subset of Q

So Q ′ = P(Q), q′0 = {q0}

δ′(R , a) = ∪(δ(r , a)) over all r ∈ R ,R ∈ Q ′

F ′ = {R ∈ Q ′|R contains an accept state of F}
Next: let us assume that ε-transitions are used in N

S. Datta (York Univ.) EECS 2001N W 2019 6 / 26

The Big Question

Equivalence of DFA, NFA - The General Case

Q ′ = P(Q)

q′0 = E ({q0})

for all R ∈ Q ′ and a ∈ Σ
δ′(R , a) = {q ∈ Q|q ∈ E (δ(r , a)) for some r ∈ R}

F ′ = {R ∈ Q ′|R contains an accept state of N}

S. Datta (York Univ.) EECS 2001N W 2019 7 / 26

The Big Question

Why This Construction Works...

for any string w ∈ Σ∗,

can argue informally that w is accepted by N iff w is accepted
by M

Can prove using induction on the number of steps of
computation

S. Datta (York Univ.) EECS 2001N W 2019 8 / 26

Back to Regular Languages

Closure: Revisiting Old Terminology

A set is defined to be closed under an operation if that operation on
members of the set always produces a member of the same set. E.g.:

The integers are closed under addition, multiplication

The integers are not closed under division

Σ∗ is closed under concatenation

A set can be defined by closure – Σ∗ is called the (Kleene)
closure of Σ under concatenation.

S. Datta (York Univ.) EECS 2001N W 2019 9 / 26

Back to Regular Languages

New Terminology: Regular Operations

The regular operations are:

Union

Concatenation

Star (Kleene Closure): For a language A, define
A∗ = {w1w2w3 . . .wk |k ≥ 0, and each wi ∈ A}

Want to prove that regular languages are closed under regular
operations

S. Datta (York Univ.) EECS 2001N W 2019 10 / 26

Back to Regular Languages

Proving Closure under Regular Operations

We showed that regular languages are closed under:

Complementation (Theorem 2.6.4)

Union

We got stuck at concatenation, and introduced nondeterminism
Next, we show closure under

Union (easier proof)

Concatenation

Star (Kleene Closure)

S. Datta (York Univ.) EECS 2001N W 2019 11 / 26

Back to Regular Languages

Proving Closure Under Union

S. Datta (York Univ.) EECS 2001N W 2019 12 / 26

Back to Regular Languages

Proving Closure Under Concatenation

S. Datta (York Univ.) EECS 2001N W 2019 13 / 26

Back to Regular Languages

Proving Closure Under Kleene Star

S. Datta (York Univ.) EECS 2001N W 2019 14 / 26

Back to Regular Languages

Incorrect reasoning about RL

Since L1 = {w |w = an, n ∈ N}, L2 = {w |w = bn, n ∈ N} are
regular, therefore L1 · L2 = {w |w = anbn, n ∈ N} is regular

If L1 is a regular language, then L2 = {wR |w ∈ L1} is regular,
and therefore L1 · L2 = {wwR |w ∈ L1} is regular

S. Datta (York Univ.) EECS 2001N W 2019 15 / 26

Back to Regular Languages

Putting it all together

A recursive definition for regular languages

∅, {ε} and {a} for any symbol a ∈ Σ are regular languages

If L1 and L2 are regular languages, then L1 ∪ L2, L1L2 and L∗1 are
regular languages.

Nothing is a regular language unless it is obtained from the
above two clauses.

S. Datta (York Univ.) EECS 2001N W 2019 16 / 26

All finite languages are regular

Every Finite Language is Recognized by a NFA

Given a word w = w1w2...wk there is a NFA that recognizes
{w}. Example of w = w1w2w3

q0 q1 q2 q3
w1 w2 w3

Use the union construction on languages containing single
words...

S. Datta (York Univ.) EECS 2001N W 2019 17 / 26

All finite languages are regular

Regular Languages: Exercises

Prove the following result:
If L1 and L2 are regular languages, then L1 ∩ L2 is a regular
language too

Describe the language that is recognized by this NFA:

q0 q1 q2 q3

1

1 0, ε
1

0,1

ε

S. Datta (York Univ.) EECS 2001N W 2019 18 / 26

Regular Expressions

Another Characterization of Regular Languages

Regular Expressions

Unix ‘grep’ command: Global Regular Expression and Print

Lexical Analyzer Generators (part of compilers)

Other practical uses in software design

Will see some examples and then formulate a precise definition

Finally will obtain another characterization of regular languages!

S. Datta (York Univ.) EECS 2001N W 2019 19 / 26

Regular Expressions

Examples of Regular Expressions

e1 = a ∪ b, L(e1) = {a, b}

e2 = ab ∪ ba, L(e2) = {ab, ba}

e3 = a∗, L(e3) = {a}∗

e4 = (a ∪ b)∗, L(e4) = {a, b}∗

e5 = (em · en), L(e5) = L(em) · L(en)

e6 = a∗b ∪ a∗bb, L(e6) = {w |w ∈ {a, b}∗ and w has 0 or
more a’s followed by 1 or 2 b’s}

S. Datta (York Univ.) EECS 2001N W 2019 20 / 26

Regular Expressions

Regular Expressions: Recursive Definition

Regular Expressions (RE)

R = a, with a ∈ Σ: R ∈ RE

R = ε (empty expression): R ∈ RE

R = ∅: R ∈ RE

R = (R1 ∪ R2), where R1,R2 ∈ RE: R ∈ RE

R = (R1 · R2), where R1,R2 ∈ RE: R ∈ RE

R = (R∗1), where R1 ∈ RE: R ∈ RE

Precedence order: ∗, ·,∪

S. Datta (York Univ.) EECS 2001N W 2019 21 / 26

Regular Expressions

Regular Expressions: Identities (Thm 2.7.4)

R1∅ = ∅R1 = ∅
R1ε = εR1 = R1

R1 ∪ ∅ = ∅ ∪ R1 = R1

R1 ∪ R1 = R1

R1 ∪ R2 = R2 ∪ R1

R1(R2 ∪ R3) = R1R2 ∪ R1R3

(R1 ∪ R2)R3 = R1R3 ∪ R2R3

R1(R2R3) = (R1R2)R3

∅∗ = ε

ε∗ = ε

(ε ∪ R1)∗ = R∗1
and a few others

S. Datta (York Univ.) EECS 2001N W 2019 22 / 26

Regular Expressions

Regular Expressions: The Big Result

Regular expressions (RE) and Regular Languages are the same set

Theorem 2.8.1 Let L be a language. Then L is regular if and
only if there exists a regular expression that describes L

Part 1: If a language is described by a regular expression, then it
is regular (We will show how to convert a regular expression R
into an NFA M such that L(R) = L(M))

Part 2: If a language is regular, then it can be described by a
regular expression

S. Datta (York Univ.) EECS 2001N W 2019 23 / 26

Regular Expressions

Part 1: RE to RL (NFA construction)

Construction: Use recursive
definition

R = ∅,R = ε
R = a, with a ∈ Σ
R = (R1 ∪ R2), with
R1 and R2 regular
expressions
R = (R1 · R2), with R1

and R2 regular
expressions
R = (R∗1), with R1 a
regular expression

q0

q1

q2 q3
a

Last 3 are similar to closure of RL
under union, concatenation, star

S. Datta (York Univ.) EECS 2001N W 2019 24 / 26

Regular Expressions

RE to NFA: Examples

R = ab ∪ ba (L = {ab, ba})

R = ab(ab)∗ (L = {ab, abab, ababab, . . .})

L = {w |w = ambn,m < 10, n > 10}

S. Datta (York Univ.) EECS 2001N W 2019 25 / 26

Regular Expressions

Part 2: RL to RE

If a language is regular, then it can be described by a regular
expression.

Proof idea: Sipser’s and our texts use different techniques. Each
is somewhat complex, but accessible. You can read the proof in
Ch 2.8.2. You will not be tested on this part.

Why is this useful?
– one use in answering “what language does this NFA accept?”

S. Datta (York Univ.) EECS 2001N W 2019 26 / 26

	The Big Question
	Back to Regular Languages
	All finite languages are regular
	Regular Expressions

