
EECS 2001N : Introduction to the Theory of

Computation

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N
Also on Moodle

S. Datta (York Univ.) EECS 2001N W 2019 1 / 19

http://www.eecs.yorku.ca/course/2001N


Regular Languages

Regular Languages: Definition

The language recognized by a finite automaton (DFA or NFA)
M is denoted by L(M)

A regular language is a language for which there exists a
recognizing finite automaton

We study properties of regular languages to understand finite
automata

S. Datta (York Univ.) EECS 2001N W 2019 2 / 19



Regular Languages

Important Questions

Given the description of a finite automaton M = (Q,Σ, δ, q,F ),
what is the language L(M) that it recognizes?

In general, what kind of languages can be recognized by finite
automata? (What are the regular languages?)

It is easiest to define regular languages RECURSIVELY

S. Datta (York Univ.) EECS 2001N W 2019 3 / 19



Regular Languages

Towards a Recursive Definition of Regular

Languages

Recall: a language is a set of words over some alphabet
Base case:

The empty language is regular (WHY?)

Every set {a}, a ∈ Σ is a regular language

Later: We will show that every finite language is regular

S. Datta (York Univ.) EECS 2001N W 2019 4 / 19



Regular Languages

Towards a Recursive Definition of Regular

Languages - 2

Need rules to build up bigger languages

The union of two regular languages is regular

This needs proof

If we can run two automata “in parallel”, we can decide if a
word belongs to the union

We will present a somewhat complicated proof (Theorem 2.3.1
in the text) that simulates the idea above

S. Datta (York Univ.) EECS 2001N W 2019 5 / 19



Regular Languages

The Union of Two Regular Languages is Regular

Suppose M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2) accept
languages L1, L2
Proof idea: track the state of both automata

We will construct a DFA M that accepts L1 ∪ L2. So,

∀w ∈ Σ∗,M accepts w ⇔ M1 accepts w or M2 accepts w

Define M = (Q3,Σ, δ3, q3,F3) by

Q3 = Q1 × Q2 = {(r1, r2)|r1 ∈ Q1, r2 ∈ Q2}
δ3((r1, r2), a) = (δ1(r1, a), δ2(r2, a))
q3 = (q1, q2)
F3 = {(r1, r2)|r1 ∈ F1 or r2 ∈ F2}

We can complete the proof by induction on the length of w

S. Datta (York Univ.) EECS 2001N W 2019 6 / 19



Regular Languages

Towards a Recursive Definition of Regular

Languages - 3

Need rules to build up bigger languages

The complement of a regular language is regular

The proof idea is straightforward: Take the DFA that recognizes
the language and make all non-accepting states accepting and
vice versa

S. Datta (York Univ.) EECS 2001N W 2019 7 / 19



Regular Languages

The Complement of a Regular Language is

Regular: Proof

Take the DFA M that recognizes the language and construct M ′ that
is identical to M except that all non-accepting states in M are
accepting in M ′ and vice versa.

We show that w ∈ L if and only if M ′ accepts w

Since the set of states, the initial state and the transition
function of M and M ′ are identical, the sequence of states
(r0, r1, ..., rn) that M goes through on input w is identical to the
sequence of states M ′ goes through on input w

Now consider 2 cases:

w ∈ L
w 6∈ L (i.e., w ∈ L)

S. Datta (York Univ.) EECS 2001N W 2019 8 / 19



Regular Languages

Towards a Recursive Definition of Regular

Languages - 4

Define concatenation of languages: L1 · L2 = {xy |x ∈ L1, y ∈ L2}
Example: {a, b} · {0, 11} = {a0, a11, b0, b11}
Caveat: If any of the 4 elements are missing, the set is not L1 · L2!

Another rule to build up bigger languages: The concatenation of
two regular languages is regular

Terminology: regular languages are closed under concatenation
(and also closed under union from the prior result)

This also needs proof

S. Datta (York Univ.) EECS 2001N W 2019 9 / 19



Regular Languages

Proving the Concatenation Theorem

Given the two languages, we “know” DFA M1, M2 that
recognize the two languages

If a word w ∈ L1 · L2 then w = w1w2 such that w1 is accepted
by M1 and w2 is accepted by M2

Problem: given a string w , how does the automaton know where
the part accepted by M1 stops and the part accepted by M2

substring starts?

We need a new idea!

S. Datta (York Univ.) EECS 2001N W 2019 10 / 19



Nondeterminism and NFAs

Nondeterminism

Nondeterministic machines are capable of being lucky, no matter
how small the probability

Alternatively, it can “magically” make the right choices

As mentioned before, nondeterminism cannot be implemented

For any (sub)string w , the nondeterministic machine can be in a
set of possible states

If any if the final states is an accepting state, then the machine
accepts the string

“The automaton processes the input in a parallel fashion. Its
computational path is no longer a line, but a tree.” (Sipser)

S. Datta (York Univ.) EECS 2001N W 2019 11 / 19



Nondeterminism and NFAs

Nondeterministic Finite Automata (NFA)

A NFA may have transition rules/possibilities like

q1 q2

ε

q3 q4

q5

1

1

S. Datta (York Univ.) EECS 2001N W 2019 12 / 19



Nondeterminism and NFAs

Nondeterministic Finite Automata (NFA) - 2

What does this NFA do?

q0 q1 q2 q3

0,1

1 0, ε 1

0,1

S. Datta (York Univ.) EECS 2001N W 2019 13 / 19



Nondeterminism and NFAs

NFA: Tracing Examples

q0 q1 q2 q3

0,1

1 0, ε 1

0,1

1: May be in states q0, q1, q2! None of those are accepting
states, so reject

01: May be in states q0, q1, q2! None of those are accepting
states, so reject

0110: It can reach state q3, hence accept!
(q0 → q0 → q1 → q2 → q3 → q3)

the fact that there are non-accepting paths is of no consequence

S. Datta (York Univ.) EECS 2001N W 2019 14 / 19



Nondeterminism and NFAs

NFA Drawing Conventions

All transitions need not be present

All but one state must be drawn

Unlabeled transitions are assumed to go to a reject state (not
drawn) from which the automaton cannot escape

S. Datta (York Univ.) EECS 2001N W 2019 15 / 19



Nondeterminism and NFAs

NFA: Formal Definition

A NFA M is defined by a 5-tuple M = (Q,Σ, δ, q0,F ), with

Q: finite set of states

Σ: finite alphabet

δ: transition function δ : Q × Σε → P(Q)

q0 ∈ Q: start state

F ⊆ Q: set of accepting states

S. Datta (York Univ.) EECS 2001N W 2019 16 / 19



Nondeterminism and NFAs

NFA: More on the Transition function

The function δ : Q × Σε → P(Q) is the crucial difference
between DFA, NFA

It means: “When reading symbol ‘a’ while in state q, the
machine can go to one of the states in δ(q, a) ⊆ Q”

The ε in Σε = Σ ∪ {ε} takes care of the empty string transitions

S. Datta (York Univ.) EECS 2001N W 2019 17 / 19



Nondeterminism and NFAs

NFA: recognizing languages

Informal idea: Given a language, the NFA recognizes it, i.e., it
accepts every string in the language, and rejects every string not
in the language

Formally: A NFA M = (Q,Σ, δ, q,F ) accepts a string/word
w = w1 . . .wn if and only if we can rewrite w as y1 . . . ym with
yi ∈ Σε and there is a sequence r0, . . . , rm of states in Q such
that:

r0 = q0
ri+1 ∈ δ(ri , yi+1) for all i = 0, 1, . . . ,m–1
rm ∈ F

S. Datta (York Univ.) EECS 2001N W 2019 18 / 19



Nondeterminism and NFAs

NFA: Exercises - 1

Give NFAs with the specified number of states that recognize the
following languages over the alphabet Σ = {0, 1}:
{w |w ends with 00}, three states

{0}; two states

{w |w contains even number of zeroes, or exactly two ones},
six states

{0n|n ∈ {0, 1, 2, . . .}}, one state

S. Datta (York Univ.) EECS 2001N W 2019 19 / 19


	Regular Languages
	Nondeterminism and NFAs

