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Regular Languages: Definition

@ The language recognized by a finite automaton (DFA or NFA)
M is denoted by L(M)

@ A regular language is a language for which there exists a
recognizing finite automaton

@ We study properties of regular languages to understand finite
automata
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Regular Languages

Important Questions

@ Given the description of a finite automaton M = (Q, X%, 4, q, F),
what is the language L(M) that it recognizes?

@ In general, what kind of languages can be recognized by finite
automata? (What are the regular languages?)

@ It is easiest to define regular languages RECURSIVELY
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Regular Languages

Towards a Recursive Definition of Regular
Languages

Recall: a language is a set of words over some alphabet
Base case:

@ The empty language is regular (WHY?)
@ Every set {a}, a € ¥ is a regular language

o Later: We will show that every finite language is regular
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Regular Languages

Towards a Recursive Definition of Regular
Languages - 2

Need rules to build up bigger languages

@ The union of two regular languages is regular
@ This needs proof

@ If we can run two automata “in parallel”, we can decide if a
word belongs to the union

@ We will present a somewhat complicated proof (Theorem 2.3.1
in the text) that simulates the idea above
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The Union of Two Regular Languages is Regular

Suppose My = (Q1, X, 61, q1, F1) and My = (@, X, 02, G, F») accept
languages Ly, L,
Proof idea: track the state of both automata

@ We will construct a DFA M that accepts L; U L,. So,

VYw € X*, M accepts w & My accepts w or M, accepts w

e Define M = (Qs, %, 03, g3, F3) by
Q=@ x Q2 ={(n,n)|ne@Q,nrnec @}
33((r1, r2), a) = (61(n, @), 92(r2, @))

93 = (g1, 92)
Fs={(rn,rn)|n € Fror nc R}

@ We can complete the proof by induction on the length of w
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Regular Languages

Towards a Recursive Definition of Regular
Languages - 3

Need rules to build up bigger languages

@ The complement of a regular language is regular

@ The proof idea is straightforward: Take the DFA that recognizes
the language and make all non-accepting states accepting and
vice versa
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Regular Languages

The Complement of a Regular Language is
Regular: Proof

Take the DFA M that recognizes the language and construct M’ that

is identical to M except that all non-accepting states in M are
accepting in M’ and vice versa.

@ We show that w € L if and only if M’ accepts w

@ Since the set of states, the initial state and the transition
function of M and M’ are identical, the sequence of states
(ro, r1, ..., ra) that M goes through on input w is identical to the
sequence of states M’ goes through on input w
@ Now consider 2 cases:
ewel
ow¢gl(ie, wel)
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Regular Languages

Towards a Recursive Definition of Regular
Languages - 4

Define concatenation of languages: L; - L, = {xy|x € L1,y € L,}
Example: {a, b} - {0,11} = {a0, all, b0, b11}
Caveat: If any of the 4 elements are missing, the set is not Ly - L,!

@ Another rule to build up bigger languages: The concatenation of
two regular languages is regular

@ Terminology: regular languages are closed under concatenation
(and also closed under union from the prior result)

@ This also needs proof
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Regular Languages

Proving the Concatenation Theorem

@ Given the two languages, we “know” DFA M;, M, that
recognize the two languages

o If aword w € Ly - L, then w = wyw, such that w; is accepted
by M; and w» is accepted by M,

@ Problem: given a string w, how does the automaton know where
the part accepted by M; stops and the part accepted by M,
substring starts?

\We need a new idea!\
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Nondeterminism and NFAs

Nondeterminism

@ Nondeterministic machines are capable of being lucky, no matter
how small the probability

o Alternatively, it can “magically” make the right choices
@ As mentioned before, nondeterminism cannot be implemented

@ For any (sub)string w, the nondeterministic machine can be in a
set of possible states

o If any if the final states is an accepting state, then the machine
accepts the string

@ “The automaton processes the input in a parallel fashion. Its
computational path is no longer a line, but a tree.” (Sipser)
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Nondeterminism and NFAs

Nondeterministic Finite Automata (NFA)

A NFA may have transition rules/possibilities like

(]
= )

S. Datta (York Univ.) EECS 2001N W 2019 12/19



Nondeterministic Finite Automata (NFA) - 2

What does this NFA do?

0,1 0,1
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Nondeterminism and NFAs

NFA: Tracing Examples

@ 1. May be in states qo, g1, ! None of those are accepting
states, so reject

@ 01: May be in states qo, g1, g2! None of those are accepting
states, so reject

@ 0110: It can reach state g3, hence accept!
(g0 = G0 — q1 — g2 — g3 — q3)
@ the fact that there are non-accepting paths is of no consequence
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NFA Drawing Conventions

@ All transitions need not be present

@ All but one state must be drawn

@ Unlabeled transitions are assumed to go to a reject state (not
drawn) from which the automaton cannot escape
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NFA: Formal Definition

A NFA M is defined by a 5-tuple M = (Q, X, 0, qo, F), with

@ Q: finite set of states

@ X: finite alphabet

@ J: transition function § : Q x X, — P(Q)
@ go € Q: start state

e F C Q: set of accepting states
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NFA: More on the Transition function

@ The function § : Q x £, — P(Q) is the crucial difference
between DFA, NFA

@ It means: “When reading symbol ‘a’ while in state g, the
machine can go to one of the states in §(g,a) C Q"

@ The e in ¥, = X U {¢} takes care of the empty string transitions
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NFA: recognizing languages

@ Informal idea: Given a language, the NFA recognizes it, i.e., it
accepts every string in the language, and rejects every string not
in the language

e Formally: ANFA M = (Q, %, 9, q, F) accepts a string/word
W = w ...w, if and only if we can rewrite w as y; ...y, with

yi € . and there is a sequence rg, ..., r, of states in @ such
that:

@ o =dqo

o riy1 €0(ri,yiy1) forall i=0,1,...,m-1

e rpmeF
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NFA: Exercises - 1

Give NFAs with the specified number of states that recognize the
following languages over the alphabet ¥ = {0,1}:

o {w|w ends with 00}, three states
e {0}; two states

e {w|w contains even number of zeroes, or exactly two ones},
six states

e {0"ne€{0,1,2,...}}, one state
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