EECS 2001N : Introduction to the Theory of
Computation

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N
Also on Moodle

S. Datta (York Univ.) EECS 2001N W 2019 1/19

http://www.eecs.yorku.ca/course/2001N

Finite Automata

@ Simplest machine model

@ Design automata for simple problems

@ Study languages recognized by finite automata

S. Datta (York Univ.) EECS 2001N W 2019

2/19

Finite Languages

Recognizing finite languages

@ Just need a lookup table and a search algorithm

@ Can be done with very simple hardware (aside: content
addressable memories)

@ Problem — cannot express infinite sets, e.g. odd integers

S. Datta (York Univ.) EECS 2001N W 2019 3/19

Finite Automata

Finite Automata: Example

Components:
qo: start state,
q:: accept state,
transition rules

S. Datta (York Univ.) EECS 2001N W 2019 4/19

Finite Automata

Finite Automata: Determinism vs Non-determinism

@ Deterministic: the normal, realizable models

@ Non-deterministic: equipped with an unrealizable power, good
for studying powers of machine models.

@ More on non-determinism later

@ Deterministic Finite Automata (DFA) vs Nondeterministic Finite
Automata (NFA)

S. Datta (York Univ.) EECS 2001N W 2019 5/19

Finite Automata: Details

The simplest machine that can recognize an infinite language

@ “Read once”, “no write" procedure

@ Starts at state go. At each step, consumes the next character of
input, moves to a new state as dictated by ¢

@ At the end it is either in an accept state (the input string is
accepted) or is not in an accept state (the input is rejected)

@ If a FA accepts all words in a language and rejects every other
word, we say that the FA recognizes the language

S. Datta (York Univ.) EECS 2001N W 2019 6/19

Finite Automata: Details

@ Useful for describing algorithms also. Used a lot in network
protocol description

@ Can be implemented very easily in hardware

@ Will show: DFA'’s can accept finite languages as well

S. Datta (York Univ.) EECS 2001N W 2019 7/19

Finite Automata

DFA: Tracing inputs

@ c: State transitions: qo, Reject

@ 0110: State transitions: gy — go — g1 — g1 — @2, Reject
@ 011: State transitions: go — qo — g1 — g1, Accept

@ 101: State transitions: go — g1 — g» — g1, Accept

@ Argue that 010100100100100 is accepted

S. Datta (York Univ.) EECS 2001N W 2019 8/19

Finite Automata: Examples of Languages

Note: ¥ = {0,1} in each case
o L={w|lweX*}

o L ={w|w € * w has no zeroes}
o L ={w|w e X* wends with 1}
o L ={w|w € I* w contains substring 01}

L = {w|w € X*|w| is divisible by 3}

L= {w|w € * |w| is odd or w ends with 1}
L = {w|w € ¥, |w| is divisible by 10°}

|How do we show these? |

S. Datta (York Univ.) EECS 2001N W 2019 9/19

DFA Design Example 0

Design DFA for language:
L={w|lw e {0,1}"}

One state is enough!

Exercise: Modify the FA above to accept the set of all non-zero
length binary strings

S. Datta (York Univ.) EECS 2001N W 2019 10/19

DFA Design Example 1

Design DFA for language:
L={w|w € {0,1}", w has no zeroes}

Two states to remember:

@ no symbol so far was a 0 (state qo)

@ some symbol was a 0 (state g;)

S. Datta (York Univ.) EECS 2001N W 2019

11/19

DFA Drawing Conventions

@ All transitions must be present and labelled

@ So from each state there should be a transition for each
character in the alphabet

@ If two transitions vary only in the input (i.e., begin and end in
the same nodes) they are drawn as one arrow with multiple
labels separated by commas

@ If some states or transitions are missing the DFA is incomplete
and thus undefined

S. Datta (York Univ.) EECS 2001N W 2019 12/19

DFA Design Example 2

Design DFA for language:
L={w|w € {0,1}", w ends with 1}

Two states to remember:

@ last symbol was not a 1 (state qo)
@ last symbol was a 1 (state ¢;)

Q: What if we made g; the start state?
EECS 2001N W 2019

13/19

DFA Design Example 3

Design DFA for language:
L ={w € 0,1 % |w contains substring 01}

Three states to remember:

@ Have seen the substring 01
@ Not seen substring 01 and last symbol was 0
@ Not seen substring 01 and last symbol was not 0

1 0,1

0
——)
Q: General principles?
EECS 2001N W 2019 14/19

DFA: Exercises

Assuming ¥ = {0,1} in each case, design DFA’s that recognize the

following languages
@ All words ending with 01

@ All words with an odd number of 1's

@ All words of length 3 modulo 5

@ All words containing both 10 and 01 as subwords

S. Datta (York Univ.) EECS 2001N W 2019

15/19

Finite Automata

Recognizing Finite Languages: an Example

Design DFA for language:

L = {010}

0,1

S. Datta (York Univ.) EECS 2001N W 2019 16 /19

DFA: formal definition

A deterministic finite automaton (DFA) M is defined by a 5-tuple
M: (Qazaéaq[)?,:)

@ Q: finite set of states

@ X: finite alphabet

@ : transition function 0 : Q@ X ¥ — @

@ gy € Q: start state

@ F C Q: set of accepting states (could be empty or Q)

S. Datta (York Univ.) EECS 2001N W 2019 17 /19

Solving Problems with DFAs

Example

M:(Q72757q07F)

e states Q = {qo, g1, G2}
e alphabet ¥ = {0,1}

@ start state qg
@ accept states

F={a}
@ transition function ¢ :
011
o | 9o | 1
i | 92 | 1
Q| g1 | ¢

S. Datta (York Univ.)

EECS 2001N W 2019

18/19

DFA: Recognizing Languages

Recall: a problem can be expressed as a language. Formally:

@ A finite automaton M = (Q, X, 9, g, F) accepts a string/word
w = wy ...w, if and only if there is a sequence ry ... r, of states
in Q such that:

® o =4qo
o d(ri,wjt1) =rig1 forall i=0,1,...,n-1
e reF

@ Given a language, the DFA recognizes it, i.e., it accepts every
string in the language, and rejects every string not in the
language

@ Very commonly forgotten fact: a DFA that recognizes a strict
superset of a language does not recognize the language

S. Datta (York Univ.) EECS 2001N W 2019 19/19

	Finite Automata
	Solving Problems with DFAs

