
EECS 2001N : Introduction to the Theory of

Computation

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N
Also on Moodle

S. Datta (York Univ.) EECS 2001N W 2019 1 / 19

http://www.eecs.yorku.ca/course/2001N

Finite Automata

Finite Automata

Simplest machine model

Design automata for simple problems

Study languages recognized by finite automata

S. Datta (York Univ.) EECS 2001N W 2019 2 / 19

Finite Automata

Finite Languages

Recognizing finite languages

Just need a lookup table and a search algorithm

Can be done with very simple hardware (aside: content
addressable memories)

Problem – cannot express infinite sets, e.g. odd integers

S. Datta (York Univ.) EECS 2001N W 2019 3 / 19

Finite Automata

Finite Automata: Example

q0 q1 q2

0

1

1

0

0, 1

Components:
q0: start state,
q1: accept state,
transition rules

S. Datta (York Univ.) EECS 2001N W 2019 4 / 19

Finite Automata

Finite Automata: Determinism vs Non-determinism

Deterministic: the normal, realizable models

Non-deterministic: equipped with an unrealizable power, good
for studying powers of machine models.

More on non-determinism later

Deterministic Finite Automata (DFA) vs Nondeterministic Finite
Automata (NFA)

S. Datta (York Univ.) EECS 2001N W 2019 5 / 19

Finite Automata

Finite Automata: Details

The simplest machine that can recognize an infinite language

“Read once”, “no write” procedure

Starts at state q0. At each step, consumes the next character of
input, moves to a new state as dictated by δ

At the end it is either in an accept state (the input string is
accepted) or is not in an accept state (the input is rejected)

If a FA accepts all words in a language and rejects every other
word, we say that the FA recognizes the language

S. Datta (York Univ.) EECS 2001N W 2019 6 / 19

Finite Automata

Finite Automata: Details

Useful for describing algorithms also. Used a lot in network
protocol description

Can be implemented very easily in hardware

Will show: DFA’s can accept finite languages as well

S. Datta (York Univ.) EECS 2001N W 2019 7 / 19

Finite Automata

DFA: Tracing inputs

q0 q1 q2

0

1

1

0

0, 1

ε: State transitions: q0, Reject

0110: State transitions: q0 → q0 → q1 → q1 → q2, Reject

011: State transitions: q0 → q0 → q1 → q1, Accept

101: State transitions: q0 → q1 → q2 → q1, Accept

Argue that 010100100100100 is accepted

S. Datta (York Univ.) EECS 2001N W 2019 8 / 19

Finite Automata

Finite Automata: Examples of Languages

Note: Σ = {0, 1} in each case

L = {w |w ∈ Σ∗}

L = {w |w ∈ Σ∗,w has no zeroes}

L = {w |w ∈ Σ∗,w ends with 1}

L = {w |w ∈ Σ∗,w contains substring 01}

L = {w |w ∈ Σ∗, |w | is divisible by 3}

L = {w |w ∈ Σ∗, |w | is odd or w ends with 1}

L = {w |w ∈ Σ∗, |w | is divisible by 106}

How do we show these?

S. Datta (York Univ.) EECS 2001N W 2019 9 / 19

Finite Automata

DFA Design Example 0

Design DFA for language:

L = {w |w ∈ {0, 1}∗}

One state is enough!

q0

0, 1

Exercise: Modify the FA above to accept the set of all non-zero
length binary strings

S. Datta (York Univ.) EECS 2001N W 2019 10 / 19

Finite Automata

DFA Design Example 1

Design DFA for language:

L = {w |w ∈ {0, 1}∗,w has no zeroes}

Two states to remember:

no symbol so far was a 0 (state q0)

some symbol was a 0 (state q1)

q0 q1

1

0

0, 1

S. Datta (York Univ.) EECS 2001N W 2019 11 / 19

Finite Automata

DFA Drawing Conventions

All transitions must be present and labelled

So from each state there should be a transition for each
character in the alphabet

If two transitions vary only in the input (i.e., begin and end in
the same nodes) they are drawn as one arrow with multiple
labels separated by commas

If some states or transitions are missing the DFA is incomplete
and thus undefined

S. Datta (York Univ.) EECS 2001N W 2019 12 / 19

Finite Automata

DFA Design Example 2

Design DFA for language:

L = {w |w ∈ {0, 1}∗,w ends with 1}

Two states to remember:

last symbol was not a 1 (state q0)
last symbol was a 1 (state q1)

q0 q1

0

1

1

0

Q: What if we made q1 the start state?
S. Datta (York Univ.) EECS 2001N W 2019 13 / 19

Finite Automata

DFA Design Example 3

Design DFA for language:

L = {w ∈ 0, 1 ∗ |w contains substring 01}

Three states to remember:

Have seen the substring 01
Not seen substring 01 and last symbol was 0
Not seen substring 01 and last symbol was not 0

q0 q1 q2

1

0

0

1

0, 1

Q: General principles?
S. Datta (York Univ.) EECS 2001N W 2019 14 / 19

Finite Automata

DFA: Exercises

Assuming Σ = {0, 1} in each case, design DFA’s that recognize the
following languages

All words ending with 01

All words with an odd number of 1’s

All words of length 3 modulo 5

All words containing both 10 and 01 as subwords

S. Datta (York Univ.) EECS 2001N W 2019 15 / 19

Finite Automata

Recognizing Finite Languages: an Example

Design DFA for language:

L = {010}

q0 q1 q2 q3

q4

1

0

0

1

1

0

0, 1

0, 1

S. Datta (York Univ.) EECS 2001N W 2019 16 / 19

Solving Problems with DFAs

DFA: formal definition

A deterministic finite automaton (DFA) M is defined by a 5-tuple
M = (Q,Σ, δ, q0,F)

Q: finite set of states

Σ: finite alphabet

δ: transition function δ : Q × Σ→ Q

q0 ∈ Q: start state

F ⊆ Q: set of accepting states (could be empty or Q)

S. Datta (York Univ.) EECS 2001N W 2019 17 / 19

Solving Problems with DFAs

Example

M = (Q,Σ, δ, q0,F)

states Q = {q0, q1, q2}
alphabet Σ = {0, 1}
start state q0
accept states
F = {q1}
transition function δ :

0 1
q0 q0 q1
q1 q2 q1
q2 q1 q1

q0 q1 q2

0

1

1

0

0, 1

S. Datta (York Univ.) EECS 2001N W 2019 18 / 19

Solving Problems with DFAs

DFA: Recognizing Languages

Recall: a problem can be expressed as a language. Formally:

A finite automaton M = (Q,Σ, δ, q,F) accepts a string/word
w = w1 . . .wn if and only if there is a sequence r0 . . . rn of states
in Q such that:

r0 = q0
δ(ri ,wi+1) = ri+1 for all i = 0, 1, . . . , n–1
rn ∈ F

Given a language, the DFA recognizes it, i.e., it accepts every
string in the language, and rejects every string not in the
language

Very commonly forgotten fact: a DFA that recognizes a strict
superset of a language does not recognize the language

S. Datta (York Univ.) EECS 2001N W 2019 19 / 19

	Finite Automata
	Solving Problems with DFAs

