EECS 2001N : Introduction to the Theory of Computation

Suprakash Datta
 Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2001N
Also on Moodle

Grammars

- Another model of languages
- Study languages recognized by different types of grammars

Regular Grammars and Regular Languages

A regular grammar $G=(V, \Sigma, R, S)$ is defined by

- V : a finite set of variables
- Σ : finite set terminals (with $V \cap \Sigma=\emptyset$)
- R: finite set of substitution rules $V \rightarrow(V \cup \Sigma \cup \Sigma V)$
- $A \rightarrow \epsilon, A \in V$
- $A \rightarrow a, a \in \Sigma, A \in V$
- $A \rightarrow a B, a \in \Sigma, A, B \in V$
- S : start symbol $\in V$

Notation: Rules are combined as follows: $A \rightarrow a, A \rightarrow a B$ are written as $A \rightarrow a \mid a B$

Regular Grammar: Derivation

- A single step derivation \Rightarrow consist of the substitution of a variable by a string according to a substitution rule
- Example: with the rules $A \rightarrow 0 B, A \rightarrow 1 A$, we can have the derivation $01 A \Rightarrow 010 B$
- A sequence of several derivations (or none) is indicated by " \Rightarrow *"
- Same example: $0 A \Rightarrow^{*} 11110 B$
- define the language generated by G to be $L(G)=\left\{w \mid S \Rightarrow^{*} w\right.$, where $\left.w \in \Sigma^{*}\right\}$

Regular Grammar: Example

- $\Sigma=\{0,1\}, V=\{S, T\}$
- $S \rightarrow \epsilon$
- $S \rightarrow 0 S$
- $S \rightarrow T$
- $T \rightarrow 1 T$
- $T \rightarrow \epsilon$
- Example derivation: $S \Rightarrow^{*} 0001111$
- This generates the language

$$
L=\left\{0^{m} 1^{n} \mid m, n \in \mathbb{Z}, m, n \geq 0\right\}
$$

Regular Grammar from a DFA

Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we construct a corresponding regular grammar $G_{M}=(V, \Sigma, R, S)$ with

- $V=Q$
- $S=q_{0}$
- Rules of G_{M} :
- $q_{i} \rightarrow x \delta\left(q_{i}, x\right)$ for all $q_{i} \in V$ and all $x \in \Sigma$
- $q_{i} \rightarrow \epsilon$ for all $q_{i} \in F$

Regular Grammar from a DFA - 2

- $\Sigma=\{0,1\}, V=\left\{q_{0}, q_{1}, q_{2}\right\}, S=q_{0}$
- Rules of G_{M} :
- $q_{0} \rightarrow 0 q_{0} \mid 1 q_{1}$
- $q_{1} \rightarrow 0 q_{2}\left|1 q_{1}\right| \epsilon$
- $q_{2} \rightarrow 0 q_{1} \mid 1 q_{1}$

Two Problems

- Given a grammar G, find the language it generates
- Given a grammar G and a word w, determine if $w \in L(G)$ [Parsing]
Analogous problems:
- Given an English sentence, determine if its is grammatically correct
- Given a Java program, determine if it compiles

More Complex Languages

- Grammar view: how can we make the grammar richer? More complex rules, e.g. of the form
- $A \rightarrow a A b, a, b \in \Sigma, A \in V$
- $A \rightarrow a B C, a \in \Sigma, A, B, C \in V$
- Machine view: how can we augment a FA?

Augment a FA with a stack

- We will return to this view later

Do More Complex Grammars Help?

A Grammar for the Nonregular Language

$$
L=\left\{0^{n} 1^{n} \mid n \in \mathbb{Z}, n \geq 0\right\}
$$

- $S \rightarrow 0$ S $_{1}$
- $S \rightarrow \epsilon$
S yields $0^{n} 1^{n}$ according to the derivation:
$S \rightarrow 0 S 1 \rightarrow 00 S 11 \rightarrow \ldots \rightarrow 0^{n} S 1^{n} \rightarrow 0^{n} 1^{n}$

Context-free Languages

- Simplest grammar more complex than regular grammars
- Model for natural languages (Noam Chomsky)
- Specification of programming languages: "parsing of a computer program"
- "context free": Rules of the form $S \rightarrow a S b T b b$.

The rule can be applied regardless of what is before or after S in an expression (context)

- "context sensitive": there is context in the left hand side of a rule, e.g. $b C \rightarrow b c$

Context-free Languages

- Human languages use context in word or phrase meanings
- Compilation of programs would be very difficult if programming languages were not context free
- Regular languages are context-free

Context-free Grammar (CFG)

A CFG $G=(V, \Sigma, R, S)$ is defined by

- V : a finite set of variables
- Σ : finite set terminals (with $V \cap \Sigma=\emptyset$)
- R : finite set of substitution rules $V \rightarrow(V \cup \Sigma)^{*}$
- S : start symbol $\in V$

Notation: Rules are combined using '|' like before

Examples of CFL's

- $L(G)=\left\{0^{n} 1^{2 n} \mid n=1,2, \ldots\right\}$
- $L(G)=\left\{0^{n} 1^{n} \mid n=1,2, \ldots\right\} \cup\left\{1^{n} 0^{n} \mid n=1,2, \ldots\right\}$
- $L(G)=\left\{x x^{R} \mid x\right.$ is a string over $\left.\{a, b\}\right\}$
- Properly parenthesized expressions (Sec 3.2.1) Solution:
$G=(V, \Sigma, R, S)$, where $V=\{S\}, \Sigma=\{()$,$\} , and$ $R=\{S \rightarrow \epsilon, S \rightarrow(S), S \rightarrow S S\}$

Harder Examples of CFL's

- $L(G)=$
$\{x \mid x$ is a string over $\{0,1\}$ with an equal number of 1 's and 0 's $\}$ Solution:
$G=(V, \Sigma, R, S)$, where $V=\{S\}, \Sigma=\{0,1\}$, and $R=\{S \rightarrow \epsilon, S \rightarrow 0 S 1 S, S \rightarrow 1 S 0 S\}$
- Complement of a regular language (Sec 3.2.3) - only an exercise....what is a simpler solution?

Harder Examples of CFL's - 2

Verifying non-negative number addition (Sec 3.2.4)

$$
L=\left\{a^{n} b^{m} c^{n+m} \mid n \geq 0, m \geq 0, m, n \in \mathbb{Z}\right\}
$$

- Verify L is not regular
- Intuition: every time an 'a' or 'b' are added, a 'c' must be added
- Rules:
- $S \rightarrow \epsilon \mid A$
- $A \rightarrow \epsilon|a A c| B$
- $B \rightarrow \epsilon \mid b B c$
- We can eliminate $S \rightarrow \epsilon, A \rightarrow \epsilon$

