EECS 2001A : Introduction to the Theory of
Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

S. Datta (York Univ.) EECS 2001A S 2020 1/18


http://www.eecs.yorku.ca/course/2001

_____ More Countably Ininte Sets among Languages |
Countably Infinite Languages

o Let ¥ = {0}. Then X* is countable
f:N— 2%, f(i)=a

@ Let ¥ be a finite alphabet. Then ¥* is countable
Idea: We list ¥* in increasing order of length and for strings of
the same length we list them in lexicographic order
E.g.: {0,1} = {¢0,1,00,01,10,11,000,...}
Then each finite length string gets a unique finite label

o IMPORTANT: Set of all Turing machines T is countable:
Idea: Every TM can be encoded as a string over some . There
is a surjective map from ¥* to T.

S. Datta (York Univ.) EECS 2001A S 2020 2/18



Countably Infinite Languages - 2

@ We just argued that the set of all Turing machines T is
countable

@ What about the set of all languages (problems)?
We have argued before that this set is P(X*)

@ We will show next that P(X*) and some other sets (e.g.,
R, P(N)) are not countable!

S. Datta (York Univ.) EECS 2001A S 2020 3/18



P(X*) is not Countable

Claim: There is no surjection f : N — P(¥L*)
Proof by contradiction. Assume there is a surjection f.

e f(1),f(2),... are all infinite bit strings in {0, 1}"

@ Define the infinite string y = y1)»... by
y; = NOT(j-th bit of f(j))

@ On the one hand y € {0,1}", but on the other hand: for every
J € N we know that f(j) # y because f(j) and y differ in the
j-th bit

e f cannot be a surjection: {0,1}" is uncountable.

S. Datta (York Univ.) EECS 2001A S 2020 4/18



_______ Vore Countably Infinice Sets among Languages |
Diagonalization

51 =00000000000...
s =11111111111...
s3 =01010101010...
s =10101010101...

ss =11010110101... @ Look at the bit string
s¢ =00110110110... on the diagonal of this
s =10001000100... table: sy = 0100...

s =00110011001... @ The negation of sy,
S =11001100110... given by s = 1011.. .,
550=11011100101... does not appear in the
811—11010100100... table

[s =10111010011...




Diagonalization: Recap

@ We looked at a very innovative technique for proving that a set
S is uncountable

@ It is a proof by contradiction and starts off by assuming S is
countable

@ The argument does not (and should not) assume any specific
ordering of the set S

@ Rather it says: “Give me any enumeration/listing (or labeling

with N, or bijection with N), and | will construct an element that
is not listed /enumerated/labeled..., and that is a contradiction”

S. Datta (York Univ.) EECS 2001A S 2020 6/18



More Diagonalization: P(N) is not countable

@ The set P(N) contains all the subsets of {1,2,...}
@ Each subset X C N can be identified by an infinite string of bits
X1X ... such that x; = 1 iff j € X

@ There is a bijection between P(N) and {0, 1} - each bit string
represents a unique subset of N and each subset of N
corresponds to a unique bit string

@ We could stop here and invoke the last slide, but let us rework
the proof in the last slide

@ Proof by contradiction: Assume P(N) countable. Hence there
must exist a surjection f from N to the set of infinite bit strings
{0, 1}, or
“There is a list of all infinite bit strings”

@ Make the exact same diagonalization argument

S. Datta (York Univ.) EECS 2001A S 2020 7/18



More Diagonalization: R is not countable

e Will use diagonalization to prove R’ = [0,1) is uncountable

@ Let f be a function N — R'. So f(1),f(2),... are all infinite
digit strings (padded with zeroes if required), and let f(i); be
the j-th bit of (/)

@ Define the infinite string of digits y = y1)» ... by

— Tiff(i);>8

@ Invoke diagonalization to get a contradiction

@ So R' C R is not countable, and therefore R is not countable

S. Datta (York Univ.) EECS 2001A S 2020 8/18



Other Questions on Infinite Sets

@ The set N is countable by definition. So a proof showing it is
uncountable (using diagonalization) must fail. But where does it
fail?

@ We showed that P(N) (and R) are uncountable. What about
P(R) ?

e What about P(P(R)) ?

@ Can we build bigger and bigger infinities this way?
Cantor’s Continuum hypothesis: YES!

S. Datta (York Univ.) EECS 2001A S 2020 9/18



Back to TM's and Languages

@ We showed that the set of languages is not countable
@ We showed that the set of TM's is countable
@ So there are many languages that are not Turing recognizable

@ Are there interesting languages for which we can prove that
there is no Turing machine that recognizes it?

S. Datta (York Univ.) EECS 2001A S 2020 10/18



Our First Undecidable Language

The acceptance problem for Turing Machines:
Arm = {(M,w)|M is a TM that accepts w}
Theorem: A1y, is undecidable

@ Proof by contradiction: Assume that TM G decides Aty

@ So G is as follows

G((M,w)) = “accept” if M accepts w

= ‘“reject” if M does not accept w

@ From G we construct a new TM D that will get us into trouble...

S. Datta (York Univ.) EECS 2001A S 2020 11/18



Our First Undecidable Language - 2

Design a new TM D that takes as input a TM M as follows
@ D runs TM G on input (M, (M))
@ Disagree on the answer of G
@ Note that D always terminates because G always terminates
@ So in short,

D((M)) = “accept” if G rejects (M, (M))
= ‘“reject” if if G accepts (M, (M))

e So,

D({M)) = “accept” if M rejects (M, )
= “reject” if if M accepts (M)

S. Datta (York Univ.) EECS 2001A S 2020 12/18



Our First Undecidable Language - 3

o Recall,

D((M)) = “accept” if M rejects (M)
= “reject” if if M accepts (M)
@ Now run D on itself (i.e., (D))
o Result:,
D((D)) = “accept” if D rejects (D)
= ‘“reject” if if D accepts (D)
@ This makes no sense: D only accepts if it rejects, and vice versa

@ This is a contradiction, therefore A1y is undecidable

S. Datta (York Univ.) EECS 2001A S 2020 13/18



Viewing the Last Proof as Diagonalization

M) M) M) M) -~ D)

t reject accept reject
M, | accept t accept accept
M; | reject reject ject reject
accept accept reject ject

@ This is an instance of self-referencing by a program

@ This is sometimes natural - a character counting program can
run on itself

S. Datta (York Univ.) EECS 2001A S 2020 14 /18



Self-referencing Problems

@ Some such problems are decidable
o How big is (M)?

o Is (M) a proper TM?
@ Others are not
o Does (M) halt or not?

o Is there a smaller program M’ that is equivalent?

S. Datta (York Univ.) EECS 2001A S 2020

15/18



Turing Unrecognizability

@ A1y is not TM-decidable, but it is TM-recognizable. Wy?
@ Is there a language that is not TM-recognizable?

@ A useful result:
Theorem: If a language A is TM-recognizable and its
complement A is recognizable, then A is TM-decidable.

@ Proof: Run the recognizing TMs for A and in parallel on input
x. Wait for one of the TMs to accept. If the TM for A
accepted: “accept x"; if the TM for A accepted: “reject x”

S. Datta (York Univ.) EECS 2001A S 2020 16 /18



Turing Unrecognizability

A7y is not TM-recognizable

@ By the previous theorem it follows that Arm cannot be
TM-recognizable, because this would imply that Ay, is TM

decidable

o We call languages like Aty co-TM recognizable

17/18

S. Datta (York Univ.) EECS 2001A S 2020



Turing Unrecognizability

Other Languages that are not TM-recognizable

e This is co-TM recognizable
Obvious strategy: if the language is non-empty, we can find the

first string that is accepted ...

o Is it TM-recognizable (and thus decidable)?
Answer turns out to be NO
e EQrm = {(G,H)|G,H are TM’s with L(G) = L(H)}
e Is this co-TM recognizable?

e Is it TM-recognizable?

e Turns out both answers are NO

We need more tools to reason about these languages

18/18

S. Datta (York Univ.) EECS 2001A S 2020



	More Countably Infinite Sets among Languages
	Related Questions
	An Undecidable Language
	Turing Unrecognizability

