
EECS 2001A : Introduction to the Theory of

Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

S. Datta (York Univ.) EECS 2001A S 2020 1 / 18

http://www.eecs.yorku.ca/course/2001


More Countably Infinite Sets among Languages

Countably Infinite Languages

Let Σ = {0}. Then Σ∗ is countable
f : N→ Σ∗, f (i) = ai−1

Let Σ be a finite alphabet. Then Σ∗ is countable
Idea: We list Σ∗ in increasing order of length and for strings of
the same length we list them in lexicographic order
E.g.: {0, 1} = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}
Then each finite length string gets a unique finite label

IMPORTANT: Set of all Turing machines T is countable:
Idea: Every TM can be encoded as a string over some Σ. There
is a surjective map from Σ∗ to T .

S. Datta (York Univ.) EECS 2001A S 2020 2 / 18



More Countably Infinite Sets among Languages

Countably Infinite Languages - 2

We just argued that the set of all Turing machines T is
countable

What about the set of all languages (problems)?
We have argued before that this set is P(Σ∗)

We will show next that P(Σ∗) and some other sets (e.g.,
R,P(N)) are not countable!

S. Datta (York Univ.) EECS 2001A S 2020 3 / 18



More Countably Infinite Sets among Languages

P(Σ∗) is not Countable

Claim: There is no surjection f : N→ P(Σ∗)
Proof by contradiction. Assume there is a surjection f .

f (1), f (2), . . . are all infinite bit strings in {0, 1}N

Define the infinite string y = y1y2 . . . by
yj = NOT(j-th bit of f (j))

On the one hand y ∈ {0, 1}N, but on the other hand: for every
j ∈ N we know that f (j) 6= y because f (j) and y differ in the
j-th bit

f cannot be a surjection: {0, 1}N is uncountable.

S. Datta (York Univ.) EECS 2001A S 2020 4 / 18



More Countably Infinite Sets among Languages

Diagonalization

Look at the bit string
on the diagonal of this
table: sd = 0100...
The negation of sd ,
given by s = 1011 . . .,
does not appear in the
table

S. Datta (York Univ.) EECS 2001A S 2020 5 / 18



More Countably Infinite Sets among Languages

Diagonalization: Recap

We looked at a very innovative technique for proving that a set
S is uncountable

It is a proof by contradiction and starts off by assuming S is
countable

The argument does not (and should not) assume any specific
ordering of the set S

Rather it says: “Give me any enumeration/listing (or labeling
with N, or bijection with N), and I will construct an element that
is not listed/enumerated/labeled..., and that is a contradiction”

S. Datta (York Univ.) EECS 2001A S 2020 6 / 18



More Countably Infinite Sets among Languages

More Diagonalization: P(N) is not countable

The set P(N) contains all the subsets of {1, 2, . . .}
Each subset X ⊆ N can be identified by an infinite string of bits
x1x2 . . . such that xj = 1 iff j ∈ X

There is a bijection between P(N) and {0, 1}N - each bit string
represents a unique subset of N and each subset of N
corresponds to a unique bit string

We could stop here and invoke the last slide, but let us rework
the proof in the last slide

Proof by contradiction: Assume P(N) countable. Hence there
must exist a surjection f from N to the set of infinite bit strings
{0, 1}N, or
“There is a list of all infinite bit strings”

Make the exact same diagonalization argument

S. Datta (York Univ.) EECS 2001A S 2020 7 / 18



More Countably Infinite Sets among Languages

More Diagonalization: R is not countable

Will use diagonalization to prove R ′ = [0, 1) is uncountable

Let f be a function N→ R ′. So f (1), f (2), . . . are all infinite
digit strings (padded with zeroes if required), and let f (i)j be
the j-th bit of f (i)

Define the infinite string of digits y = y1y2 . . . by

yj = f (i)i + 1 if f (i)i < 8

= 7 if f (i)i ≥ 8

Invoke diagonalization to get a contradiction

So R ′ ⊂ R is not countable, and therefore R is not countable

S. Datta (York Univ.) EECS 2001A S 2020 8 / 18



Related Questions

Other Questions on Infinite Sets

The set N is countable by definition. So a proof showing it is
uncountable (using diagonalization) must fail. But where does it
fail?

We showed that P(N) (and R) are uncountable. What about
P(R) ?

What about P(P(R)) ?

Can we build bigger and bigger infinities this way?
Cantor’s Continuum hypothesis: YES!

S. Datta (York Univ.) EECS 2001A S 2020 9 / 18



Related Questions

Back to TM’s and Languages

We showed that the set of languages is not countable

We showed that the set of TM’s is countable

So there are many languages that are not Turing recognizable

Are there interesting languages for which we can prove that
there is no Turing machine that recognizes it?

S. Datta (York Univ.) EECS 2001A S 2020 10 / 18



An Undecidable Language

Our First Undecidable Language

The acceptance problem for Turing Machines:
ATM = {〈M ,w〉|M is a TM that accepts w}
Theorem: ATM is undecidable

Proof by contradiction: Assume that TM G decides ATM

So G is as follows

G (〈M ,w〉) = “accept” if M accepts w

= “reject” if M does not accept w

From G we construct a new TM D that will get us into trouble...

S. Datta (York Univ.) EECS 2001A S 2020 11 / 18



An Undecidable Language

Our First Undecidable Language - 2

Design a new TM D that takes as input a TM M as follows

D runs TM G on input 〈M , 〈M〉〉
Disagree on the answer of G

Note that D always terminates because G always terminates

So in short,

D(〈M〉) = “accept” if G rejects 〈M , 〈M〉〉
= “reject” if if G accepts 〈M , 〈M〉〉

So,

D(〈M〉) = “accept” if M rejects 〈M , 〉
= “reject” if if M accepts 〈M〉

S. Datta (York Univ.) EECS 2001A S 2020 12 / 18



An Undecidable Language

Our First Undecidable Language - 3

Recall,

D(〈M〉) = “accept” if M rejects 〈M〉
= “reject” if if M accepts 〈M〉

Now run D on itself (i.e., 〈D〉)
Result:,

D(〈D〉) = “accept” if D rejects 〈D〉
= “reject” if if D accepts 〈D〉

This makes no sense: D only accepts if it rejects, and vice versa

This is a contradiction, therefore ATM is undecidable

S. Datta (York Univ.) EECS 2001A S 2020 13 / 18



An Undecidable Language

Viewing the Last Proof as Diagonalization

This is an instance of self-referencing by a program

This is sometimes natural - a character counting program can
run on itself

S. Datta (York Univ.) EECS 2001A S 2020 14 / 18



An Undecidable Language

Self-referencing Problems

Some such problems are decidable

How big is 〈M〉?

Is 〈M〉 a proper TM?

Others are not

Does 〈M〉 halt or not?

Is there a smaller program M ′ that is equivalent?

S. Datta (York Univ.) EECS 2001A S 2020 15 / 18



Turing Unrecognizability

Turing Unrecognizability

ATM is not TM-decidable, but it is TM-recognizable. Wy?

Is there a language that is not TM-recognizable?

A useful result:
Theorem: If a language A is TM-recognizable and its
complement A is recognizable, then A is TM-decidable.

Proof: Run the recognizing TMs for A and in parallel on input
x . Wait for one of the TMs to accept. If the TM for A
accepted: “accept x”; if the TM for A accepted: “reject x”

S. Datta (York Univ.) EECS 2001A S 2020 16 / 18



Turing Unrecognizability

ATM is not TM-recognizable

By the previous theorem it follows that ATM cannot be
TM-recognizable, because this would imply that ATM is TM
decidable

We call languages like ATM co-TM recognizable

S. Datta (York Univ.) EECS 2001A S 2020 17 / 18



Turing Unrecognizability

Other Languages that are not TM-recognizable

ETM = {〈G 〉|G is a TM with L(G ) = ∅}
This is co-TM recognizable
Obvious strategy: if the language is non-empty, we can find the
first string that is accepted ...

Is it TM-recognizable (and thus decidable)?
Answer turns out to be NO

EQTM = {〈G ,H〉|G ,H are TM’s with L(G ) = L(H)}
Is this co-TM recognizable?

Is it TM-recognizable?

Turns out both answers are NO

We need more tools to reason about these languages

S. Datta (York Univ.) EECS 2001A S 2020 18 / 18


	More Countably Infinite Sets among Languages
	Related Questions
	An Undecidable Language
	Turing Unrecognizability

