EECS 2001A : Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

Countably Infinite Languages

- Let $\Sigma=\{0\}$. Then Σ^{*} is countable $f: \mathbb{N} \rightarrow \Sigma^{*}, f(i)=a^{i-1}$
- Let Σ be a finite alphabet. Then Σ^{*} is countable Idea: We list Σ^{*} in increasing order of length and for strings of the same length we list them in lexicographic order E.g.: $\{0,1\}=\{\epsilon, 0,1,00,01,10,11,000, \ldots\}$

Then each finite length string gets a unique finite label

- IMPORTANT: Set of all Turing machines T is countable: Idea: Every TM can be encoded as a string over some Σ. There is a surjective map from Σ^{*} to T.

Countably Infinite Languages - 2

- We just argued that the set of all Turing machines T is countable
- What about the set of all languages (problems)? We have argued before that this set is $\mathcal{P}\left(\Sigma^{*}\right)$
- We will show next that $\mathcal{P}\left(\Sigma^{*}\right)$ and some other sets (e.g., $\mathbb{R}, \mathcal{P}(\mathbb{N})$) are not countable!

$\mathcal{P}\left(\Sigma^{*}\right)$ is not Countable

Claim: There is no surjection $f: \mathbb{N} \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$
Proof by contradiction. Assume there is a surjection f.

- $f(1), f(2), \ldots$ are all infinite bit strings in $\{0,1\}^{\mathbb{N}}$
- Define the infinite string $y=y_{1} y_{2} \ldots$ by $y_{j}=\operatorname{NOT}(\mathrm{j}-\mathrm{th}$ bit of $f(j))$
- On the one hand $y \in\{0,1\}^{\mathbb{N}}$, but on the other hand: for every $j \in \mathbb{N}$ we know that $f(j) \neq y$ because $f(j)$ and y differ in the j-th bit
- f cannot be a surjection: $\{0,1\}^{\mathbb{N}}$ is uncountable.

Diagonalization

$$
\begin{aligned}
& s_{1}=00000000000 \ldots \\
& s_{2}=11111111111 \ldots \\
& s_{3}=01010101010 \ldots \\
& s_{4}=10101010101 \ldots \\
& s_{5}=11010110101 \ldots \\
& s_{6}=00110110110 \ldots \\
& s_{7}=10001000100 \ldots \\
& s_{8}=00110011001 \ldots \\
& s_{9}=11001100110 \ldots \\
& s_{10}=11011100101 \ldots \\
& s_{11}=11010100100 \ldots \\
& \vdots \quad \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \cdot
\end{aligned}
$$

- Look at the bit string on the diagonal of this table: $s_{d}=0100 \ldots$
- The negation of s_{d}, given by $s=1011$..., does not appear in the table

$$
s=10111010011 \ldots
$$

Diagonalization: Recap

- We looked at a very innovative technique for proving that a set S is uncountable
- It is a proof by contradiction and starts off by assuming S is countable
- The argument does not (and should not) assume any specific ordering of the set S
- Rather it says: "Give me any enumeration/listing (or labeling with \mathbb{N}, or bijection with \mathbb{N}), and I will construct an element that is not listed/enumerated/labeled..., and that is a contradiction"

More Diagonalization: $\mathcal{P}(\mathbb{N})$ is not countable

- The set $\mathcal{P}(\mathbb{N})$ contains all the subsets of $\{1,2, \ldots\}$
- Each subset $X \subseteq \mathbb{N}$ can be identified by an infinite string of bits $x_{1} x_{2} \ldots$ such that $x_{j}=1$ iff $j \in X$
- There is a bijection between $\mathcal{P}(\mathbb{N})$ and $\{0,1\}^{\mathbb{N}}$ - each bit string represents a unique subset of \mathbb{N} and each subset of \mathbb{N} corresponds to a unique bit string
- We could stop here and invoke the last slide, but let us rework the proof in the last slide
- Proof by contradiction: Assume $\mathcal{P}(\mathbb{N})$ countable. Hence there must exist a surjection f from \mathbb{N} to the set of infinite bit strings $\{0,1\}^{\mathbb{N}}$, or
"There is a list of all infinite bit strings"
- Make the exact same diagonalization argument

More Diagonalization: \mathbb{R} is not countable

- Will use diagonalization to prove $R^{\prime}=[0,1)$ is uncountable
- Let f be a function $\mathbb{N} \rightarrow R^{\prime}$. So $f(1), f(2), \ldots$ are all infinite digit strings (padded with zeroes if required), and let $f(i)_{j}$ be the j-th bit of $f(i)$
- Define the infinite string of digits $y=y_{1} y_{2} \ldots$ by

$$
\begin{aligned}
y_{j} & =f(i)_{i}+1 \text { if } f(i)_{i}<8 \\
& =7 \text { if } f(i)_{i} \geq 8
\end{aligned}
$$

- Invoke diagonalization to get a contradiction
- So $R^{\prime} \subset \mathbb{R}$ is not countable, and therefore \mathbb{R} is not countable

Other Questions on Infinite Sets

- The set \mathbb{N} is countable by definition. So a proof showing it is uncountable (using diagonalization) must fail. But where does it fail?
- We showed that $\mathcal{P}(\mathbb{N})$ (and \mathbb{R}) are uncountable. What about $\mathcal{P}(\mathbb{R})$?
- What about $\mathcal{P}(\mathcal{P}(\mathbb{R}))$?
- Can we build bigger and bigger infinities this way? Cantor's Continuum hypothesis: YES!

Back to TM's and Languages

- We showed that the set of languages is not countable
- We showed that the set of TM's is countable
- So there are many languages that are not Turing recognizable
- Are there interesting languages for which we can prove that there is no Turing machine that recognizes it?

Our First Undecidable Language

The acceptance problem for Turing Machines:
$A_{T M}=\{\langle M, w\rangle \mid M$ is a TM that accepts $w\}$
Theorem: $A_{T M}$ is undecidable

- Proof by contradiction: Assume that TM G decides $A_{T M}$
- So G is as follows

$$
\begin{aligned}
G(\langle M, w\rangle) & =\text { "accept" if } M \text { accepts } w \\
& =\text { "reject" if } M \text { does not accept } w
\end{aligned}
$$

- From G we construct a new TM D that will get us into trouble...

Our First Undecidable Language - 2

Design a new TM D that takes as input a TM M as follows

- D runs TM G on input $\langle M,\langle M\rangle\rangle$
- Disagree on the answer of G
- Note that D always terminates because G always terminates
- So in short,

$$
\begin{aligned}
D(\langle M\rangle) & =" \text { accept" if } G \text { rejects }\langle M,\langle M\rangle\rangle \\
& =\text { "reject" if if } G \operatorname{accepts}\langle M,\langle M\rangle\rangle
\end{aligned}
$$

- So,

$$
\begin{aligned}
D(\langle M\rangle) & =\text { "accept" if } M \text { rejects }\langle M,\rangle \\
& =\text { "reject" if if } M \text { accepts }\langle M\rangle
\end{aligned}
$$

Our First Undecidable Language - 3

- Recall,

$$
\begin{aligned}
D(\langle M\rangle) & =\text { "accept" if } M \text { rejects }\langle M\rangle \\
& =\text { "reject" if if } M \text { accepts }\langle M\rangle
\end{aligned}
$$

- Now run D on itself (i.e., $\langle D\rangle$)
- Result:,

$$
\begin{aligned}
D(\langle D\rangle) & =\text { "accept" if } D \text { rejects }\langle D\rangle \\
& =\text { "reject" if if } D \text { accepts }\langle D\rangle
\end{aligned}
$$

- This makes no sense: D only accepts if it rejects, and vice versa
- This is a contradiction, therefore $A_{T M}$ is undecidable

Viewing the Last Proof as Diagonalization

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots	$\langle D\rangle$
M_{1}	acsept	reject	accept	reject		
M_{2}	accept	accept	accept	accept		
M_{3}	reject	reject	reject	reject	\cdots	
M_{4}	accept	accept	reject	reject		
\vdots			\vdots		\cdots	
D	reject	reject	accept	accept	\cdots	

- This is an instance of self-referencing by a program
- This is sometimes natural - a character counting program can run on itself

Self-referencing Problems

- Some such problems are decidable
- How big is $\langle M\rangle$?
- Is $\langle M\rangle$ a proper TM?
- Others are not
- Does $\langle M\rangle$ halt or not?
- Is there a smaller program M^{\prime} that is equivalent?

Turing Unrecognizability

- $A_{T M}$ is not TM-decidable, but it is TM-recognizable. Wy?
- Is there a language that is not TM-recognizable?
- A useful result:

Theorem: If a language A is TM-recognizable and its complement \bar{A} is recognizable, then A is TM-decidable.

- Proof: Run the recognizing TMs for A and in parallel on input x. Wait for one of the TMs to accept. If the TM for A accepted: "accept x "; if the TM for \bar{A} accepted: "reject x "

$\bar{A}_{T M}$ is not TM-recognizable

- By the previous theorem it follows that $\bar{A}_{T M}$ cannot be TM-recognizable, because this would imply that $A_{T M}$ is TM decidable
- We call languages like $\bar{A}_{T M}$ co-TM recognizable

Other Languages that are not TM-recognizable

- $E_{T M}=\{\langle G\rangle \mid G$ is a TM with $L(G)=\emptyset\}$
- This is co-TM recognizable Obvious strategy: if the language is non-empty, we can find the first string that is accepted ...
- Is it TM-recognizable (and thus decidable)?

Answer turns out to be NO

- $E Q_{T M}=\{\langle G, H\rangle \mid G, H$ are TM's with $L(G)=L(H)\}$
- Is this co-TM recognizable?
- Is it TM-recognizable?
- Turns out both answers are NO

We need more tools to reason about these languages

