EECS 2001A : Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001 Also on Moodle

Reasoning about Undecidable Problems

Questions:

 Q: How do we know there are undecidable problems?
 A: Through a counting argument: there are more languages than Turing machines and so there are languages than Turing machines. Thus some languages cannot be decidable

• Q: How do we show that a specific problem is undecidable? A: Through a very novel argument!

What is Counting

- Elementary view: Labeling with natural numbers
- This is the same as "listing" the numbers as a_1, a_2, \ldots
- More advanced view: Correspondence with a set (often $\{1, 2, \dots, k\}, k \in \mathbb{N}$

Relationship with Functions

Types of functions $f : X \to Y$:

- f is one-to-one (injective) if every x ∈ X has a unique image f(x), i.e., if f(x) = f(y) then x = y
- f is onto (surjective) if every z ∈ Y is 'hit' by f(), i.e., if z ∈ Y then there is an x ∈ X such that f(x) = z
- *f* is a 1:1 correspondence (bijection) between *X* and *Y* if it is both one-to-one and onto

Relationship with Functions - 2

If X, Y are **finite** sets, and $f : X \to Y$ is:

- f is one-to-one (injective): X has no more elements than Y, i.e., $|X| \le |Y|$
- *f* is onto (surjective): *X* has at least as many elements as *Y*, i.e., |*X*| ≥ |*Y*|
- f is a 1:1 correspondence (bijection): X has exactly as many elements as Y, i.e., |X| = |Y|

Q: Do these hold for infinite sets as well?

Infinite Sets

- Our intuition breaks down for infinite sets!
- Example: Consider $A = \mathbb{N}$, $B = \{2, 4, 6, 8, ...\}$ (the set of positive even numbers), and $f : A \rightarrow B$, f(n) = 2n

• Note that f is a bijection, so intuitively, |A| = |B|

Now note that B ⊂ A (B is a proper subset of A)
What went wrong?

Cardinality of Sets

- Intuitively, "number of elements"
- Intuition not useful for infinite sets
- New definition is needed
- A set S has k elements if and only if there exists a bijection between *S* and $\{1, 2, ..., k\}$ S and $\{1, 2, \ldots, k\}$ have the same cardinality.
- If there is a surjection possible from $\{1, 2, ..., n\}$ to S, then n > |S|
- We can generalize this way of comparing the sizes of sets to infinite ones

Refining the Notion of Infinite Sets

A set S is infinite if there exists a surjective function f : S → N:
 "The set S has at least as many elements as N"

A set S is countable if there exists a surjective function
 f : N → S: "The set S has at most as many elements as N"

A set S is countably infinite if there exists a bijective function
 f : S → N: "The sets N and S are of the same cardinality"

Counterintuitive facts

- Previously given example: Consider A = N, B = {2,4,6,8,...} (the set of positive even numbers), and f : A → B, f(n) = 2n, f is a bijection, so A, B have the same cardinality
- A proper subset of \mathbb{N} has the same cardinality as $\mathbb{N}!$
- Same holds for odd natural numbers
- What about the integers?

Counting the Number of Languages over $\{0,1\}$

- Suppose we consider only words of size $k \in \mathbb{N}$
- There are 2^k such words
- The number of possible languages are 2^{2^k} because each word can be part of the language or not, so 2 choices for each of 2^k words
- If k is allowed to be unbounded, then the number of languages is infinite
- The number of possible Java programs is also infinite
- How can we show that there are more problems than Java programs?

Cardinality of Integers

- Clearly $\mathbb{N} \subset \mathbb{Z}$; in fact \mathbb{N} is "about half of" \mathbb{Z}
- Can we get a bijection from \mathbb{N} to \mathbb{Z} ? How?
- So we have to handle zero and the negative integers. Suppose we label 0 with 1. How to we handle the negative numbers?
- Idea: use the fact that the set of odd and even natural numbers are each in bijection with $\ensuremath{\mathbb{N}}$

Q: What about the non-integer numbers?

Cardinality of Rational Numbers

• There are many more positive rational numbers than natural numbers

- Between any two successive integers n, n + 1, there are an infinite number of rationals (e.g., consider the set of numbers of the form n + ¹/_k, where k = 2, 3, 4, ...)
- We have to be very creative in labeling the rationals

The Rational Numbers are Countably Infinite

- $\bullet\,$ Let us first deal with the positive rationals \mathbb{Q}^+
- Claim: There is an surjection f from $\mathbb{N} \times \mathbb{N}$ to \mathbb{Q}^+
- Proof: Let f map $(m, n) \in \mathbb{N} \times \mathbb{N}$ to $\frac{m}{n} \in \mathbb{Q}^+$
- Every element of \mathbb{Q}^+ can be put in the form $\frac{m}{n}$ by definition of \mathbb{Q}
- $\frac{m}{n} = \frac{2m}{2n} = \frac{3m}{3n} = \dots$, so f is a many-one mapping
- So it is enough to prove that $\mathbb{N}\times\mathbb{N}$ is countably infinite (Why?)

The Rational Numbers are Countably Infinite - 2

Claim: $\mathbb{N} \times \mathbb{N}$ is countably infinite Proof: Use Cantor numbering

1/1	1/2-	> 1/3	3_1/4→1/5		1/6→1/7		_1/8→…	
↓ 2/1	ير مر 2/2	2/3	م 2/4	2/5	⁷ k 2/6	2/7	a 2/8	
3/1	3/2 7	3/3	3/4	3/5	3/6	3/7	3/8	
4 /1	4/2	4/3	4/4	4/5	4/6	4/7	4/8	
5/1	5/2	5/3	5/4 7	5/5	5/6	5/7	5/8	•••
6/1	6/2	6/3	6/4	6/5	6/6	6/7	6/8	
7/1	7/2 7	7/3	7/4	7/5	7/6	7/7	7/8	
8/1	8/2	8/3	8/4	8/5	8/6	8/7	8/8	
÷	:	:	:	:	:	:	:	·.

The Rational Numbers are Countably Infinite - 3

- So we showed that Q⁺ is countable. Next we argue that the positive integers have a bijection with the positive rationals, the negative integers to the negative rationals and zero maps to zero. So there is a bijection between Q and Z, and thus with N
- $\bullet\,$ Note that the ordering of ${\mathbb Q}$ is not in increasing order or decreasing order of value
- In proofs, you CANNOT assume that an ordering has to be in increasing or decreasing order
- So cannot use ideas like "between any two rational numbers x, y, there exists a rational number 0.5(x + y)" to prove uncountability of Q