EECS 2001A : Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

Reasoning about Undecidable Problems

Questions:

- Q: How do we know there are undecidable problems?

A: Through a counting argument: there are more languages than Turing machines and so there are languages than Turing machines. Thus some languages cannot be decidable

- Q: How do we show that a specific problem is undecidable? A: Through a very novel argument!

What is Counting

- Elementary view: Labeling with natural numbers
- This is the same as "listing" the numbers - as a_{1}, a_{2}, \ldots
- More advanced view: Correspondence with a set (often $\{1,2, \ldots, k\}, k \in \mathbb{N}$

Relationship with Functions

Types of functions $f: X \rightarrow Y$:

- f is one-to-one (injective) if every $x \in X$ has a
 unique image $f(x)$, i.e., if $f(x)=f(y)$ then $x=y$
- f is onto (surjective) if every $z \in Y$ is 'hit' by $f()$, i.e., if $z \in Y$ then there is an $x \in X$ such that $f(x)=z$
- f is a $1: 1$ correspondence (bijection) between X and Y if it is both one-to-one and onto

Relationship with Functions - 2

If X, Y are finite sets, and $f: X \rightarrow Y$ is:

- f is one-to-one (injective): X has no more elements than Y, i.e., $|X| \leq|Y|$
- f is onto (surjective): X has at least as many elements as Y, i.e., $|X| \geq|Y|$
- f is a $1: 1$ correspondence (bijection): X has exactly as many elements as Y, i.e., $|X|=|Y|$

Q: Do these hold for infinite sets as well?

Infinite Sets

- Our intuition breaks down for infinite sets!
- Example: Consider $A=\mathbb{N}, B=\{2,4,6,8, \ldots\}$ (the set of positive even numbers), and $f: A \rightarrow B, f(n)=2 n$
- Note that f is a bijection, so intuitively, $|A|=|B|$
- Now note that $B \subset A(B$ is a proper subset of $A)$
- What went wrong?

Cardinality of Sets

- Intuitively, "number of elements"
- Intuition not useful for infinite sets
- New definition is needed
- A set S has k elements if and only if there exists a bijection between S and $\{1,2, \ldots, k\}$
S and $\{1,2, \ldots, k\}$ have the same cardinality.
- If there is a surjection possible from $\{1,2, \ldots, n\}$ to S, then $n \geq|S|$
- We can generalize this way of comparing the sizes of sets to infinite ones

Refining the Notion of Infinite Sets

- A set S is infinite if there exists a surjective function $f: S \rightarrow \mathbb{N}$: "The set S has at least as many elements as \mathbb{N} "
- A set S is countable if there exists a surjective function $f: \mathbb{N} \rightarrow S$: "The set S has at most as many elements as \mathbb{N} "
- A set S is countably infinite if there exists a bijective function $f: S \rightarrow \mathbb{N}$: "The sets \mathbb{N} and S are of the same cardinality"

Counterintuitive facts

- Previously given example: Consider $A=\mathbb{N}, B=\{2,4,6,8, \ldots\}$ (the set of positive even numbers), and $f: A \rightarrow B, f(n)=2 n, f$ is a bijection, so A, B have the same cardinality
- A proper subset of \mathbb{N} has the same cardinality as \mathbb{N} !
- Same holds for odd natural numbers
- What about the integers?

Counting the Number of Languages over $\{0,1\}$

- Suppose we consider only words of size $k \in \mathbb{N}$
- There are 2^{k} such words
- The number of possible languages are $2^{2^{k}}$ - because each word can be part of the language or not, so 2 choices for each of 2^{k} words
- If k is allowed to be unbounded, then the number of languages is infinite
- The number of possible Java programs is also infinite
- How can we show that there are more problems than Java programs?

Cardinality of Integers

- Clearly $\mathbb{N} \subset \mathbb{Z}$; in fact \mathbb{N} is "about half of" \mathbb{Z}
- Can we get a bijection from \mathbb{N} to \mathbb{Z} ? How?
- So we have to handle zero and the negative integers. Suppose we label 0 with 1 . How to we handle the negative numbers?
- Idea: use the fact that the set of odd and even natural numbers are each in bijection with \mathbb{N}
- | \ldots | 7 | 5 | 3 | 1 | 2 | 4 | 6 | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \ldots | -3 | -2 | -1 | 0 | 1 | 2 | 3 | \ldots |

Q: What about the non-integer numbers?

Cardinality of Rational Numbers

- There are many more positive rational numbers than natural numbers
- Between any two successive integers $n, n+1$, there are an infinite number of rationals (e.g., consider the set of numbers of the form $n+\frac{1}{k}$, where $k=2,3,4, \ldots$)
- We have to be very creative in labeling the rationals

The Rational Numbers are Countably Infinite

- Let us first deal with the positive rationals \mathbb{Q}^{+}
- Claim: There is an surjection f from $\mathbb{N} \times \mathbb{N}$ to \mathbb{Q}^{+}
- Proof: Let f map $(m, n) \in \mathbb{N} \times \mathbb{N}$ to $\frac{m}{n} \in \mathbb{Q}^{+}$
- Every element of \mathbb{Q}^{+}can be put in the form $\frac{m}{n}$ by definition of \mathbb{Q}
- $\frac{m}{n}=\frac{2 m}{2 n}=\frac{3 m}{3 n}=\ldots$, so f is a many-one mapping
- So it is enough to prove that $\mathbb{N} \times \mathbb{N}$ is countably infinite (Why?)

The Rational Numbers are Countably Infinite - 2

Claim: $\mathbb{N} \times \mathbb{N}$ is countably infinite Proof: Use Cantor numbering

The Rational Numbers are Countably Infinite - 3

- So we showed that \mathbb{Q}^{+}is countable. Next we argue that the positive integers have a bijection with the positive rationals, the negative integers to the negative rationals and zero maps to zero. So there is a bijection between \mathbb{Q} and \mathbb{Z}, and thus with \mathbb{N}
- Note that the ordering of \mathbb{Q} is not in increasing order or decreasing order of value
- In proofs, you CANNOT assume that an ordering has to be in increasing or decreasing order
- So cannot use ideas like "between any two rational numbers x, y, there exists a rational number $0.5(x+y)$ " to prove uncountability of \mathbb{Q}

