EECS 2001A : Introduction to the Theory of
Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

S. Datta (York Univ.) EECS 2001A S 2020 1/36

http://www.eecs.yorku.ca/course/2001

Turing Machine: Decidability vs Recognizability Definitions

Turing Machines - Decidability

@ A language L = L(M) is decided by the TM M if on every
input w, the TM finishes in a halting configuration.
That is: Gaccept for w € L and Gyeject for all w L.

@ A language L is Turing-decidable if and only if thereisa TM M
that decides L

@ Also called: a recursive language

S. Datta (York Univ.) EECS 2001A S 2020 2/36

Turing Machine: Decidability vs Recognizability Definitions

Turing Machines - Recognizability
@ A language L = L(M) is recognized by the TM M if on every
input w € L, the TM finishes in the halting configuration qaccept

@ On an input w & L, the machine M can halt in the rejecting
state Greject, OF it can ‘loop’ indefinitely

o A language L is Turing-recognizable if and only if there is a TM
M such that L = L(M)
Recall: The language that consists of all inputs that are
accepted by a TM M is denoted by L(M)

@ Also called: a recursively enumerable language

S. Datta (York Univ.) EECS 2001A S 2020 3/36

Turing Machines - Variants

@ Multiple tapes

@ 2-way infinite tapes

@ Non-deterministic TM's

S. Datta (York Univ.) EECS 2001A S 2020

4/36

Multi-tape Turing Machines (Ch 3.2)

Theorem 3.13: Let kK > 1 be an integer. Any k-tape Turing machine
can be converted to an equivalent one-tape Turing machine.

@ Proving and understanding these kinds of robustness results is
essential for appreciating the power of the Turing Machine model

@ From this theorem it follows that:
A language L is TM-recognizable if and only if some multi-tape
TM recognizes L.

S. Datta (York Univ.) EECS 2001A S 2020 5/36

Proof of Theorem 3.13

@ Take a 2-tape TM M and construct an equivalent one-tape TM
N

“N can simulate M"
@ Tape alphabet of N: T U {x|x € T} U {#}

@ ldea: the contents of the two tapes will be maintained on one
tape separated by # and the dotted version of a character will
be used to indicate the location of the head

S. Datta (York Univ.) EECS 2001A S 2020 6/36

Proof of Theorem 3.13 - contd.

N simulates the computation of M in each step

At the start of the step, the tape head of N is on the leftmost
symbol #

N “remembers” the state of M in its state
In each step, N moves right until it has read both dotted symbols

The second and then the first dotted symbol is changed as M
would change them

In either case above the contents of the tape may have to be
shifted

Finally, N remembers the new state of M and moves to the
leftmost symbol #

S. Datta (York Univ.) EECS 2001A S 2020 7/36

2-way Infinite Tape Turing Machines

o For every 2-way infinite tape TM M, there is a 2-tape TM M’
such that L(M) = L(M)

@ Suppose the cells are numbered 0,1,2,.... and -1,-2,....

@ Idea: Store the contents of cell 0 and everything to its right on
the first tape of M’ and everything to the left of cell 0 on the
second tape, and simulate the computation of M as usual

S. Datta (York Univ.) EECS 2001A S 2020 8/36

Non-deterministic Turing Machines

A Non-deterministic one-tape Turing Machine M is defined by a

7_tup|e (Q, Z, F, 57 do, qacceph qreject):
o finite set of states @

@ finite input alphabet X

o finite tape alphabet I'

@ start state go € Q

@ accept state Gaceepr € Q

@ reject state Greject € Q

@ transition function

S. Datta (York Univ.)

§:QxI—=P(QxTx{LR})

EECS 2001A S 2020

9/36

Non-deterministic Turing Machines - 2

@ Just like multi-tape TM'’s, nondeterministic TM's are not more
powerful than simple TMs

@ Every nondeterministic TM has an equivalent 3-tape TM, which
in turn has an equivalent 1-tape TM (stated at Theorem 3.16 in
the text)

@ Hence: “A language L is recognizable if and only if some
nondeterministic TM recognizes it."

@ The Turing machine model is extremely robust!

S. Datta (York Univ.) EECS 2001A S 2020 10/36

Non-deterministic Turing Machines - 3

A non-deterministic TM's computation may be thought of as a
tree of configurations rather than a path

o If there is (at least) one accepting leaf in this tree, then the TM
accepts

@ We have to traverse this tree using a deterministic TM

o Bad idea: “depth first” exploration. The TM may explore
never-halting paths

@ Good idea: “breadth first” exploration. For time steps 1,2,..., we
list all possible configurations of the non-deterministic TM. The
simulating TM accepts when it reaches an accepting
configuration

S. Datta (York Univ.) EECS 2001A S 2020 11/36

Non-deterministic Turing Machines - 4

@ Let M be the non-deterministic TM on input w

@ The simulating TM uses three tapes:
T, contains the input w
T, the tape content of M on w at a node
T3 describes a node in the tree of M on w

o Inititally, 77 contains w, T, and T3 are empty

@ Simulate M on w via the deterministic path to the node of tape
3.
If the node accepts, “accept”

@ Increase the node value on T3, go to previous step

S. Datta (York Univ.) EECS 2001A S 2020 12/36

The Church Turing Thesis

The Church Turing Thesis (Ch 3.3)

@ The Church-Turing thesis marks the end of a long sequence of
developments that concern the notions of “way-of-calculating”,
“procedure”, “solving”, “algorithm”

@ Statement: The following computation models are equivalent,
i.e., any one of them can be converted to any other one:
© One-tape Turing machines
© k-tape Turing machines, for any kK > 1
© Non-deterministic Turing machines
© Java programs
© C++ programs
@ Python programs

S. Datta (York Univ.) EECS 2001A S 2020 13/36

Simulation by TM's
Turing Machines - Simulating FA

How can we show that TM's can simulate DFA's?
@ Custom designed TM

@ Generic TM

S. Datta (York Univ.) EECS 2001A S 2020

14/36

Simulation by TMI's
Turing Machines - Simulating A Specific DFA

@ Intuitively, the states of the TM can be the same as those of the
FA

@ However, since the TM has a tape containing the input, we have
to make sure that the head moves to the right pointing to the
next input character at each step, updating states appropriately

@ The TM also has to sense end of the input (could be a blank, or
a $) and depending on the state of the DFA, move to Gaccept OF

Qreject

S. Datta (York Univ.) EECS 2001A S 2020 15/36

Simulation by TM's
Turing Machines - Simulating Any DFA

Input: Description of DFA B and an input w, i.e.,
B=(Q,%X,d,q0,F)and w e L*.
The TM performs the following steps:

@ Check if B and w are valid, if not: “reject”
e Copy B to a tape, w to another

@ Simulate B on w. The head on the tape containing B points to
g € Q, the state of the DFA, and the head on the tape
containing w points to i, i = 0,1, ... |w|, the position on the
input.

@ While we increase i from 0 to |w/|, we update g according to the
input letter ; and the transition function value §(q, w;)

o If B accepts w: “accept”; otherwise “reject”

S. Datta (York Univ.) EECS 2001A S 2020 16 /36

Decidability (Ch 4) Universal Turing Machines

Turing Machines - Simulating Other Turing
Machines

@ The previous proof was important for another reason, and we
will return to it

@ We can ask: what else can a TM simulate?
@ Very surprising answer: any TM

@ We will show that a TM can simulate a given TM on a given
input!

@ Is it weird for a TM to be an input to another TM?
No. A Java program to count the number of lines or characters
in a file can take a Java program as input.

S. Datta (York Univ.) EECS 2001A S 2020 17 /36

Universal Turing Machines
Universal Turing Machines

@ The input is a TM description and an input

@ Can we follow the same strategy as we did for simulating any
FA?
o Yes!

e Tape 1 has the machine description, tape 2 has the contents of
the tape of the input machine and tape 3 has the state of the
input machine

e In a loop, until tape 3 has a halting state:

Scan tape 1 to find the correct transition, and update tapes 2
and 3

S. Datta (York Univ.) EECS 2001A S 2020 18 /36

Universal Turing Machines
Universal Turing Machines - Implications

@ This is the equivalent of writing “programs” to run on a general
purpose computing model

@ We can “construct” one TM, and every other TM can “run” on
it

@ From this point of view any TM is an “algorithm” that is
“implemented” on a universal TM

@ Recall Church-Turing Thesis: The intuitive notion of computing
and algorithms is captured by the Turing machine model

S. Datta (York Univ.) EECS 2001A S 2020 19/36

Decidability (Ch 4) Implication on Math

Turing Machines - Implications on Mathematics

@ In 1900, David Hilbert (1862-1943) proposed his Mathematical
Problems (23 of them)

o Hilbert's 10th problem: Determination of the solvability of a
Diophantine equation
Given a Diophantine equation with any number of unknown
quantities and with integer coefficients: To devise a process
according to which it can be determined by a finite number of
operations whether the equation is solvable in integers

@ Let P(xy,...,xx) be a polynomial in k variables with integral
coefficients. Does P have an integral root (xi,...,x) € Z*?

S. Datta (York Univ.) EECS 2001A S 2020 20/36

Implication on Math
Turing Machines - Implications on Mathematics - 2

@ Examples:
P(x,y,z) = 6x3yz + 3xy? — x3 — 10 has integral root
(X7}/az) = (57370)
P(x,y) = 21x? — 81xy + 1 does not have an integral root

@ Hilbert's “... a process according to which it can be determined
by a finite number of operations ..." needed to be defined in a
proper way

@ Matijasevic proved that Hilbert's 10th problem is unsolvable in
1970

S. Datta (York Univ.) EECS 2001A S 2020 21/36

Turing Machine: Decidability Definition

Decidability

@ We are now ready to tackle the question: What can
computers do and what can they not?

@ We do this by considering the question: Which languages are
TM-decidable, TM-recognizable, or neither?

@ Assuming the Church-Turing thesis, these are fundamental
properties of the languages (problems)

S. Datta (York Univ.) EECS 2001A S 2020 22 /36

Turing Machine: Decidability Definition

Describing TM's

Three Levels of Describing algorithms:

o formal (state diagrams, CFGs, etc)
@ implementation (pseudo-code)

@ high-level (coherent and clear English)

Describing input/output format: TM's allow only strings in * as
input/output. If our inputs X and Y are of another form (graph,

Turing machine, polynomial), then we use (X, Y) to denote “some
kind of encoding in *"

S. Datta (York Univ.) EECS 2001A S 2020 23/36

Turing Machine: Decidability Examples

Examples of Decidable Problems

@ First we look at several decidable problems

@ Then we develop the tools to prove that some problems are
provably not decidable

S. Datta (York Univ.) EECS 2001A S 2020 24 /36

Turing Machine: Decidability DFA problems

Decidability of Regular Languages - DFA

@ We showed earlier that a TM can simulate a DFA

@ Another way to look at this is:
The acceptance problem for DFA is

Apra = {(B, w)|B is a DFA that accepts w}

Apra is a TM-decidable language

o Note that this language deals with all possible DFAs and inputs
w, not a specific instance

S. Datta (York Univ.) EECS 2001A S 2020 25/36

Turing Machine: Decidability DFA problems

Decidability of Regular Languages - NFA

The acceptance problem for NFA is

Anea = {(B, w)|B is a NFA that accepts w}

Anra is a TM-decidable language

@ Use our earlier results on finite automata to transform the NFA
B into an equivalent DFA C. We saw an algorithm to do this,
and that algorithm can be implemented on a TM

@ Use the TM C of the previous slide on (C, w)

@ This can all be done with one big, combined TM
Note: Similar reasoning can be done for regular expressions

S. Datta (York Univ.) EECS 2001A S 2020 26 /36

Turing Machine: Decidability DFA problems

Emptiness-testing of Regular Languages

Another problem relating to DFAs is the emptiness problem:

@ How can we decide this language? This language concerns the
behavior of the DFA A on all possible strings

@ ldea: check if an accept state of A is reachable from the start
state of A

S. Datta (York Univ.) EECS 2001A S 2020 27 /36

Turing Machine: Decidability DFA problems

Emptiness-testing of Regular Languages - 2
Algorithm for Epga on input A= (Q, X, 0, qo, F):

o If Ais not a proper DFA: “reject”

@ Mark the start state of A, qo

@ Repeat until no new states are marked:
Mark any states that can be d-reached from any state that is
already marked

@ If no accept state is marked, “accept”;
else “reject”

S. Datta (York Univ.) EECS 2001A S 2020

28/36

Turing Machine: Decidability DFA problems

Equivalence-testing of DFA

EQpra = {(A, B)|A, B are DFA with L(A) = L(B)}

@ ldea: Look at the symmetric difference between the two
languages (L(A) N L(B)) U (L(A) N L(B))

@ This expression uses standard DFA transformations: union,
intersection, complement

S. Datta (York Univ.) EECS 2001A S 2020 29 /36

Turing Machine: Decidability DFA problems

Equivalence-testing of DFA - 2

Algorithm for EQpga on input (A, B):
o If A or B are not proper DFA: “reject”

@ Construct a third DFA C that accepts the language

(L(A) N L(B)) U (L(A) N L(B)) (using standard transformations)

@ Decide with the Emptiness-testing TM o to check whether or
not C € Epra
If C € Epga then “accept”
If C & Eppa then “reject”

S. Datta (York Univ.) EECS 2001A S 2020 30/36

Turing Machine: Decidability CFL Problems

Context Free Language Problems

o Acrc = {(G,w)|G is a CFG that generates w}

e Ecrc = {(G)|G is a CFG with L(G) = 0}

@ EQcrc = {(G,H)|G, H are CFGs with L(G) = L(H)}

S. Datta (York Univ.) EECS 2001A S 2020

31/36

Turing Machine: Decidability CFL Problems

Acceptance of Context Free Languages

Recall: Chomsky Normal Form

e ACFG G = (V,%,R,S) is in CNF if every rule is of the form
A — BC, or
A— x
with variables A€ V and B, C € V\{S}, and x € &
For the start variable S we also allow S — ¢

@ Chomsky NF grammars are easier to analyze

@ The derivation S =* w requires 2|w| — 1 steps (apart from
S —e)

S. Datta (York Univ.) EECS 2001A S 2020 32/36

Turing Machine: Decidability CFL Problems

Acceptance of Context Free Languages - 2

The language
Acre = {(G,w)|G is a CFG that generates w}

is TM-decidable.
Proof: Perform the following algorithm:

@ Check if G and w are proper, if not “reject”

@ Rewrite G to G’ in Chomsky normal form

@ Take care of w = € case via S — € check for G’
o List all G’ derivations of length 2|w| — 1

@ Check if w occurs in this list:

if so “accept”; if not “reject”

S. Datta (York Univ.) EECS 2001A S 2020 33/36

Turing Machine: Decidability CFL Problems

Emptiness of Context Free Languages

The language

is TM-decidable.
Proof: Perform the following algorithm:

@ Check if G is proper, if not “reject”
o Let G=(V,L,R,S), defineset T =%

@ Repeat | V| times:
Check all rules B — X; ... X, in R
lf B&Z T and X;...Xx € TKthenadd Bto T

o If S € T then “reject”, otherwise “accept”

S. Datta (York Univ.) EECS 2001A S 2020 34 /36

Turing Machine: Decidability CFL Problems

Equality of Context Free Languages

Is the language
EQcrc = {(G, H)|G, H are CFG’s with L(G) = L(H)}

TM-decidable?

@ For DFA’s we could use the emptiness decision procedure to
solve the equality problem

@ For CFG's this is not possible because CFGs are not closed under
complementation or intersection

@ We suspect this problem is undecidable, but need machinery to
prove this

S. Datta (York Univ.) EECS 2001A S 2020 35/36

Turing Recognizability

Beyond Decidability: TM Recognizable Languages

@ We know that TM-decidable languages are also TM-recognizable

@ We will see that there exist problems that are not TM-decidable
but are TM-recognizable

@ A common example is the Halting Problem (Ch 5)

S. Datta (York Univ.) EECS 2001A S 2020 36 /36

	Turing Machine: Decidability vs Recognizability
	Definitions

	Turing Machine Variants
	The Church Turing Thesis
	Decidability (Ch 4)
	Simulation by TM's
	Universal Turing Machines
	Implication on Math

	Turing Machine: Decidability
	Definition
	Examples
	DFA problems
	CFL Problems

	Turing Recognizability

