
EECS 2001A : Introduction to the Theory of

Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

S. Datta (York Univ.) EECS 2001A S 2020 1 / 36

http://www.eecs.yorku.ca/course/2001

Turing Machine: Decidability vs Recognizability Definitions

Turing Machines - Decidability

A language L = L(M) is decided by the TM M if on every
input w , the TM finishes in a halting configuration.
That is: qaccept for w ∈ L and qreject for all w 6∈ L.

A language L is Turing-decidable if and only if there is a TM M
that decides L

Also called: a recursive language

S. Datta (York Univ.) EECS 2001A S 2020 2 / 36

Turing Machine: Decidability vs Recognizability Definitions

Turing Machines - Recognizability

A language L = L(M) is recognized by the TM M if on every
input w ∈ L, the TM finishes in the halting configuration qaccept

On an input w 6∈ L, the machine M can halt in the rejecting
state qreject , or it can ‘loop’ indefinitely

A language L is Turing-recognizable if and only if there is a TM
M such that L = L(M)
Recall: The language that consists of all inputs that are
accepted by a TM M is denoted by L(M)

Also called: a recursively enumerable language

S. Datta (York Univ.) EECS 2001A S 2020 3 / 36

Turing Machine Variants

Turing Machines - Variants

Multiple tapes

2-way infinite tapes

Non-deterministic TM’s

S. Datta (York Univ.) EECS 2001A S 2020 4 / 36

Turing Machine Variants

Multi-tape Turing Machines (Ch 3.2)

Theorem 3.13: Let k ≥ 1 be an integer. Any k-tape Turing machine
can be converted to an equivalent one-tape Turing machine.

Proving and understanding these kinds of robustness results is
essential for appreciating the power of the Turing Machine model

From this theorem it follows that:
A language L is TM-recognizable if and only if some multi-tape
TM recognizes L.

S. Datta (York Univ.) EECS 2001A S 2020 5 / 36

Turing Machine Variants

Proof of Theorem 3.13

Take a 2-tape TM M and construct an equivalent one-tape TM
N
“N can simulate M”

Tape alphabet of N : Γ ∪ {ẋ |x ∈ Γ} ∪ {#}

Idea: the contents of the two tapes will be maintained on one
tape separated by # and the dotted version of a character will
be used to indicate the location of the head

S. Datta (York Univ.) EECS 2001A S 2020 6 / 36

Turing Machine Variants

Proof of Theorem 3.13 - contd.

N simulates the computation of M in each step

At the start of the step, the tape head of N is on the leftmost
symbol #

N “remembers” the state of M in its state

In each step, N moves right until it has read both dotted symbols

The second and then the first dotted symbol is changed as M
would change them

In either case above the contents of the tape may have to be
shifted

Finally, N remembers the new state of M and moves to the
leftmost symbol #

S. Datta (York Univ.) EECS 2001A S 2020 7 / 36

Turing Machine Variants

2-way Infinite Tape Turing Machines

For every 2-way infinite tape TM M , there is a 2-tape TM M ′

such that L(M) = L(M)

Suppose the cells are numbered 0,1,2,.... and -1,-2,....

Idea: Store the contents of cell 0 and everything to its right on
the first tape of M ′ and everything to the left of cell 0 on the
second tape, and simulate the computation of M as usual

S. Datta (York Univ.) EECS 2001A S 2020 8 / 36

Turing Machine Variants

Non-deterministic Turing Machines

A Non-deterministic one-tape Turing Machine M is defined by a
7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject):

finite set of states Q

finite input alphabet Σ

finite tape alphabet Γ

start state q0 ∈ Q

accept state qaccept ∈ Q

reject state qreject ∈ Q

transition function δ : Q × Γ→ P(Q × Γ× {L,R})

S. Datta (York Univ.) EECS 2001A S 2020 9 / 36

Turing Machine Variants

Non-deterministic Turing Machines - 2

Just like multi-tape TM’s, nondeterministic TM’s are not more
powerful than simple TMs

Every nondeterministic TM has an equivalent 3-tape TM, which
in turn has an equivalent 1-tape TM (stated at Theorem 3.16 in
the text)

Hence: “A language L is recognizable if and only if some
nondeterministic TM recognizes it.”

The Turing machine model is extremely robust!

S. Datta (York Univ.) EECS 2001A S 2020 10 / 36

Turing Machine Variants

Non-deterministic Turing Machines - 3

A non-deterministic TM’s computation may be thought of as a
tree of configurations rather than a path

If there is (at least) one accepting leaf in this tree, then the TM
accepts

We have to traverse this tree using a deterministic TM

Bad idea: “depth first” exploration. The TM may explore
never-halting paths

Good idea: “breadth first” exploration. For time steps 1,2,..., we
list all possible configurations of the non-deterministic TM. The
simulating TM accepts when it reaches an accepting
configuration

S. Datta (York Univ.) EECS 2001A S 2020 11 / 36

Turing Machine Variants

Non-deterministic Turing Machines - 4

Let M be the non-deterministic TM on input w

The simulating TM uses three tapes:
T1 contains the input w
T2 the tape content of M on w at a node
T3 describes a node in the tree of M on w

Inititally, T1 contains w, T2 and T3 are empty

Simulate M on w via the deterministic path to the node of tape
3.
If the node accepts, “accept”

Increase the node value on T3, go to previous step

S. Datta (York Univ.) EECS 2001A S 2020 12 / 36

The Church Turing Thesis

The Church Turing Thesis (Ch 3.3)

The Church-Turing thesis marks the end of a long sequence of
developments that concern the notions of “way-of-calculating”,
“procedure”, “solving”, “algorithm”

Statement: The following computation models are equivalent,
i.e., any one of them can be converted to any other one:

1 One-tape Turing machines
2 k-tape Turing machines, for any k ≥ 1
3 Non-deterministic Turing machines
4 Java programs
5 C++ programs
6 Python programs

S. Datta (York Univ.) EECS 2001A S 2020 13 / 36

Decidability (Ch 4) Simulation by TM’s

Turing Machines - Simulating FA

How can we show that TM’s can simulate DFA’s?

Custom designed TM

Generic TM

S. Datta (York Univ.) EECS 2001A S 2020 14 / 36

Decidability (Ch 4) Simulation by TM’s

Turing Machines - Simulating A Specific DFA

Intuitively, the states of the TM can be the same as those of the
FA

However, since the TM has a tape containing the input, we have
to make sure that the head moves to the right pointing to the
next input character at each step, updating states appropriately

The TM also has to sense end of the input (could be a blank, or
a $) and depending on the state of the DFA, move to qaccept or
qreject

S. Datta (York Univ.) EECS 2001A S 2020 15 / 36

Decidability (Ch 4) Simulation by TM’s

Turing Machines - Simulating Any DFA

Input: Description of DFA B and an input w , i.e.,
B = (Q,Σ, δ, q0,F) and w ∈ Σ∗.
The TM performs the following steps:

Check if B and w are valid, if not: “reject”

Copy B to a tape, w to another

Simulate B on w . The head on the tape containing B points to
q ∈ Q, the state of the DFA, and the head on the tape
containing w points to i , i = 0, 1, .., |w |, the position on the
input.

While we increase i from 0 to |w |, we update q according to the
input letter i and the transition function value δ(q,wi)

If B accepts w : “accept”; otherwise “reject”

S. Datta (York Univ.) EECS 2001A S 2020 16 / 36

Decidability (Ch 4) Universal Turing Machines

Turing Machines - Simulating Other Turing

Machines

The previous proof was important for another reason, and we
will return to it

We can ask: what else can a TM simulate?

Very surprising answer: any TM

We will show that a TM can simulate a given TM on a given
input!

Is it weird for a TM to be an input to another TM?
No. A Java program to count the number of lines or characters
in a file can take a Java program as input.

S. Datta (York Univ.) EECS 2001A S 2020 17 / 36

Decidability (Ch 4) Universal Turing Machines

Universal Turing Machines

The input is a TM description and an input

Can we follow the same strategy as we did for simulating any
FA?

Yes!

Tape 1 has the machine description, tape 2 has the contents of
the tape of the input machine and tape 3 has the state of the
input machine

In a loop, until tape 3 has a halting state:
Scan tape 1 to find the correct transition, and update tapes 2
and 3

S. Datta (York Univ.) EECS 2001A S 2020 18 / 36

Decidability (Ch 4) Universal Turing Machines

Universal Turing Machines - Implications

This is the equivalent of writing “programs” to run on a general
purpose computing model

We can “construct” one TM, and every other TM can “run” on
it

From this point of view any TM is an “algorithm” that is
“implemented” on a universal TM

Recall Church-Turing Thesis: The intuitive notion of computing
and algorithms is captured by the Turing machine model

S. Datta (York Univ.) EECS 2001A S 2020 19 / 36

Decidability (Ch 4) Implication on Math

Turing Machines - Implications on Mathematics

In 1900, David Hilbert (1862-1943) proposed his Mathematical
Problems (23 of them)

Hilbert’s 10th problem: Determination of the solvability of a
Diophantine equation
Given a Diophantine equation with any number of unknown
quantities and with integer coefficients: To devise a process
according to which it can be determined by a finite number of
operations whether the equation is solvable in integers

Let P(x1, . . . , xk) be a polynomial in k variables with integral
coefficients. Does P have an integral root (x1, . . . , xk) ∈ Zk?

S. Datta (York Univ.) EECS 2001A S 2020 20 / 36

Decidability (Ch 4) Implication on Math

Turing Machines - Implications on Mathematics - 2

Examples:
P(x , y , z) = 6x3yz + 3xy 2 − x3 − 10 has integral root
(x , y , z) = (5, 3, 0)
P(x , y) = 21x2 − 81xy + 1 does not have an integral root

Hilbert’s “... a process according to which it can be determined
by a finite number of operations ...” needed to be defined in a
proper way

Matijasevic proved that Hilbert’s 10th problem is unsolvable in
1970

S. Datta (York Univ.) EECS 2001A S 2020 21 / 36

Turing Machine: Decidability Definition

Decidability

We are now ready to tackle the question: What can
computers do and what can they not?

We do this by considering the question: Which languages are
TM-decidable, TM-recognizable, or neither?

Assuming the Church-Turing thesis, these are fundamental
properties of the languages (problems)

S. Datta (York Univ.) EECS 2001A S 2020 22 / 36

Turing Machine: Decidability Definition

Describing TM’s

Three Levels of Describing algorithms:

formal (state diagrams, CFGs, etc)

implementation (pseudo-code)

high-level (coherent and clear English)

Describing input/output format: TM’s allow only strings in Σ∗ as
input/output. If our inputs X and Y are of another form (graph,
Turing machine, polynomial), then we use 〈X ,Y 〉 to denote “some
kind of encoding in Σ∗”

S. Datta (York Univ.) EECS 2001A S 2020 23 / 36

Turing Machine: Decidability Examples

Examples of Decidable Problems

First we look at several decidable problems

Then we develop the tools to prove that some problems are
provably not decidable

S. Datta (York Univ.) EECS 2001A S 2020 24 / 36

Turing Machine: Decidability DFA problems

Decidability of Regular Languages - DFA

We showed earlier that a TM can simulate a DFA

Another way to look at this is:
The acceptance problem for DFA is

ADFA = {〈B ,w〉|B is a DFA that accepts w}

ADFA is a TM-decidable language

Note that this language deals with all possible DFAs and inputs
w , not a specific instance

S. Datta (York Univ.) EECS 2001A S 2020 25 / 36

Turing Machine: Decidability DFA problems

Decidability of Regular Languages - NFA

The acceptance problem for NFA is

ANFA = {〈B ,w〉|B is a NFA that accepts w}

ANFA is a TM-decidable language

Use our earlier results on finite automata to transform the NFA
B into an equivalent DFA C . We saw an algorithm to do this,
and that algorithm can be implemented on a TM

Use the TM C of the previous slide on 〈C ,w〉

This can all be done with one big, combined TM

Note: Similar reasoning can be done for regular expressions

S. Datta (York Univ.) EECS 2001A S 2020 26 / 36

Turing Machine: Decidability DFA problems

Emptiness-testing of Regular Languages

Another problem relating to DFAs is the emptiness problem:

EDFA = {〈A〉|A is a DFA with L(A) = ∅}

How can we decide this language? This language concerns the
behavior of the DFA A on all possible strings

Idea: check if an accept state of A is reachable from the start
state of A

S. Datta (York Univ.) EECS 2001A S 2020 27 / 36

Turing Machine: Decidability DFA problems

Emptiness-testing of Regular Languages - 2

Algorithm for EDFA on input A = (Q,Σ, δ, q0,F):

If A is not a proper DFA: “reject”

Mark the start state of A, q0

Repeat until no new states are marked:
Mark any states that can be δ-reached from any state that is
already marked

If no accept state is marked, “accept”;
else “reject”

S. Datta (York Univ.) EECS 2001A S 2020 28 / 36

Turing Machine: Decidability DFA problems

Equivalence-testing of DFA

EQDFA = {〈A,B〉|A,B are DFA with L(A) = L(B)}

Idea: Look at the symmetric difference between the two
languages (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

This expression uses standard DFA transformations: union,
intersection, complement

S. Datta (York Univ.) EECS 2001A S 2020 29 / 36

Turing Machine: Decidability DFA problems

Equivalence-testing of DFA - 2

Algorithm for EQDFA on input 〈A,B〉:
If A or B are not proper DFA: “reject”

Construct a third DFA C that accepts the language
(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)) (using standard transformations)

Decide with the Emptiness-testing TM o to check whether or
not C ∈ EDFA

If C ∈ EDFA then “accept”
If C 6∈ EDFA then “reject”

S. Datta (York Univ.) EECS 2001A S 2020 30 / 36

Turing Machine: Decidability CFL Problems

Context Free Language Problems

ACFG = {〈G ,w〉|G is a CFG that generates w}

ECFG = {〈G 〉|G is a CFG with L(G) = ∅}

EQCFG = {〈G ,H〉|G ,H are CFGs with L(G) = L(H)}

S. Datta (York Univ.) EECS 2001A S 2020 31 / 36

Turing Machine: Decidability CFL Problems

Acceptance of Context Free Languages

Recall: Chomsky Normal Form

A CFG G = (V ,Σ,R , S) is in CNF if every rule is of the form
A→ BC , or
A→ x
with variables A ∈ V and B ,C ∈ V \{S}, and x ∈ Σ
For the start variable S we also allow S → ε

Chomsky NF grammars are easier to analyze

The derivation S ⇒∗ w requires 2|w | − 1 steps (apart from
S → ε)

S. Datta (York Univ.) EECS 2001A S 2020 32 / 36

Turing Machine: Decidability CFL Problems

Acceptance of Context Free Languages - 2

The language

ACFG = {〈G ,w〉|G is a CFG that generates w}

is TM-decidable.
Proof: Perform the following algorithm:

Check if G and w are proper, if not “reject”

Rewrite G to G ′ in Chomsky normal form

Take care of w = ε case via S → ε check for G ′

List all G ′ derivations of length 2|w | − 1

Check if w occurs in this list:
if so “accept”; if not “reject”

S. Datta (York Univ.) EECS 2001A S 2020 33 / 36

Turing Machine: Decidability CFL Problems

Emptiness of Context Free Languages

The language

ECFG = {〈G 〉|G is a CFG with L(G) = ∅}

is TM-decidable.
Proof: Perform the following algorithm:

Check if G is proper, if not “reject”

Let G = (V ,Σ,R , S), define set T = Σ

Repeat |V | times:
Check all rules B → X1 . . .Xk in R
If B 6∈ T and X1 . . .Xk ∈ T k then add B to T

If S ∈ T then “reject”, otherwise “accept”

S. Datta (York Univ.) EECS 2001A S 2020 34 / 36

Turing Machine: Decidability CFL Problems

Equality of Context Free Languages

Is the language

EQCFG = {〈G ,H〉|G ,H are CFG’s with L(G) = L(H)}

TM-decidable?

For DFA’s we could use the emptiness decision procedure to
solve the equality problem

For CFG’s this is not possible because CFGs are not closed under
complementation or intersection

We suspect this problem is undecidable, but need machinery to
prove this

S. Datta (York Univ.) EECS 2001A S 2020 35 / 36

Turing Recognizability

Beyond Decidability: TM Recognizable Languages

We know that TM-decidable languages are also TM-recognizable

We will see that there exist problems that are not TM-decidable
but are TM-recognizable

A common example is the Halting Problem (Ch 5)

S. Datta (York Univ.) EECS 2001A S 2020 36 / 36

	Turing Machine: Decidability vs Recognizability
	Definitions

	Turing Machine Variants
	The Church Turing Thesis
	Decidability (Ch 4)
	Simulation by TM's
	Universal Turing Machines
	Implication on Math

	Turing Machine: Decidability
	Definition
	Examples
	DFA problems
	CFL Problems

	Turing Recognizability

