EECS 2001A : Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

Turing Machines - Inventor

Alan M. Turing (1912-1954)
"On Computable Numbers, with an application to the Entscheidungsproblem"

Turing Machines

- The standard model of computation in theoretical computer science
- More powerful model of computation than NFA, PDA
- "Equivalent" to current computers
- Easier to reason about than modern computers
- We will study them to understand what is solvable using computers

Turing Machines - Structure

A 2-tape Turing Machine

- Tape, tape heads
- Finite state control

Turing Machines - Role of the Tape(s)

- One-way infinite
- Each cell contains one character from the tape alphabet
- A head (on on each tape) can move left or right and write characters on the tape
- The head is "controlled" by the finite state machine
- The input is written on a tape at the start of the execution
- Additional tapes are useful as scratch memory
- Output(s) written on the tape

Turing Machines - Things to Note

Note that:

- A TM can execute infinite loops
- Therefore, termination must be explicitly indicated through states
- Usually there are explicit accept and reject states, and these signify termination of execution
- Unless these states are reached the machine cannot be assumed to have terminated

Turing Machines - Execution

- Execution is a sequence of computation steps In each step, given the current state r and the k symbols read by the k tape heads,
- The machine transitions to a state r^{\prime} (may be the same as r),
- Each tape head writes a symbol in the cell it is scanning
- Each tape head moves right or stays in the same cell or moves left (unless it is at the leftmost end of a tape)

Turing Machines - Formal Description

A Turing Machine M is defined by a 7 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right):$

- finite set of states Q
- finite input alphabet Σ
- finite tape alphabet 「
- start state $q_{0} \in Q$
- accept state $q_{\text {accept }} \in Q$
- reject state $q_{\text {reject }} \in Q$
- transition function $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}$
- If $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$, the book writes $u a q_{i} b v$ yields $u a c q_{j} v$

Turing Machines - Language Accepted

$L(M)$ is the set of all strings in Σ^{*} that are accepted by M. $w \notin Ł(M)$ if on input w

- the computation of M terminates in the state $q_{\text {reject }}$ or
- the computation of M does not terminate

Turing Machines - Example

Detecting palindromes on a 1-tape Turing Machine

- the key in such problems is to think "low level", not at the level of high-level programs
- the tape is not random access, like an array; it is sequential access, like a doubly linked list
- What are the basic steps? (there are many ways to solve this)

