EECS 2001A : Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001 Also on Moodle

Proofs

• What is a proof?

• Does a proof need mathematical symbols?

• What makes a proof incorrect?

• How does one come up with a proof?

Proof techniques

- Direct Proofs
- Proof by cases
- Proof by contrapositive
- Proof by contradiction
- Proof by induction
- Others ...

Direct Proofs

Direct Proofs: Example

Proposition: Every prime number greater than 2 can be written as the difference of two squares, i.e. $a^2 - b^2$.

- Question: where do we start?
- We know how $a^2 b^2$ factors. Let us start there.
- $a^2 b^2 = (a + b)(a b)$. We have to assume a > b because $a^2 b^2$ must be positive. A prime p > 2 only factors as p * 1.
- Equating factors, a b = 1, a + b = p. Solving, $a = \frac{p+1}{2}$, $b = \frac{p-1}{2}$. Since all primes p > 2 are odd, a, b are integers.

Proof by Cases

Prove: If *n* is an integer, then $\frac{n(n+1)}{2}$ is an integer Case 1: *n* is even. or n = 2a, for some integer *a* So n(n+1)/2 = 2a * (n+1)/2 = a * (n+1), which is an integer.

Case 2: *n* is odd. So n + 1 is even, or n + 1 = 2a, for an integer *a* So n(n+1)/2 = n * 2a/2 = n * a, which is an integer.

Alternative argument: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. The sum of the first *n* integers must be an integer itself.

Proof by Cases: Caution

What is being proved must be true in ALL cases, not some!

Proof by contrapositive

Logical Basis: Any implication $p\to q$ is logically equivalent to its contrapositive $\neg q\to \neg p$

Claim: If $\sqrt{pq} \neq (p+q)/2$, then $p \neq q$

- Direct proof involves some algebraic manipulation
- Contrapositive: If p = q, then $\sqrt{pq} = (p+q)/2$. Easy: Assuming p = q, we see that $\sqrt{pq} = \sqrt{pp} = \sqrt{p^2} = p = (p+p)/2 = (p+q)/2$.

Exercise: prove that for all $a \in \mathbb{Z}$, if a^2 is even, then a is even

Proof by contradiction

Claim: $\sqrt{2}$ is irrational Proof: Suppose $\sqrt{2}$ is rational. Then $\sqrt{2} = p/q$, $p, q \in \mathbb{Z}, q \neq 0$, such that p, q have no common factors. Squaring and transposing, $p^2 = 2q^2$ (so p^2 is an even number) So, *p* is even (previous slide) Or p = 2x for some integer x So $4x^2 = 2a^2$ or $a^2 = 2x^2$ So, q is even (a previous slide) So, p, q are both even i.e., they have a common factor of 2. CONTRADICTION. So $\sqrt{2}$ is NOT rational.

Proofs by Contradiction: Rationale

- In general, start with an assumption that statement A is true. Then, using standard inference procedures infer that A is false. This is the contradiction.
- This A may or not be what you are trying to prove (e.g. in the example, the contradiction was on the fact that the numerator and denominator had no common factors)

• Recall: for any proposition p, $p \land \neg p$ must be false.

More Complex Proof Techniques

Proof by using special results, e.g.,

• Using the Pigeonhole Principle

• Proof by Induction

Pigeonhole Principle

Pigeonhole Principle

https://www.ethz.ch/en/news-and-events/eth-news/news/2016/05/creative-proofs-with-pigeons-and-boxes.html

Two statements:

- Pigeonhole Principle: If n + 1 balls are distributed among n bins then at least one bin has more than 1 ball
- Generalized Pigeonhole Principle: If n balls are distributed among k bins then at least one bin has at least [n/k] balls

Lots of interesting (and difficult) problems!

Examples

Pigeonhole Principle

- In any group of 367 people, at least 2 people must share a birthday
- In any group of 27 English words, at least 2 must start with the same letter
- In a class of 22 people, at least 2 must get the same score on a test out of 20, assuming all scores are integers

Generalized Pigeonhole Principle

- If there are 16 people and 5 possible grades, 4 people must have the same grade.
- There are 50 baskets of apples. Each basket contains no more than 24 apples. So there are at least 3 baskets containing the same number of apples.

Proofs by Induction

Mathematical Induction:

• Very simple

• Very powerful proof technique

• "Guess and verify" strategy

Induction: Steps

Hypothesis: P(n) is true for all $n \in \mathbb{N}$

• Base case/basis step (starting value): Show *P*(1) is true.

• Inductive step: Show that $\forall k \in \mathbb{N}(P(k) \rightarrow P(k+1))$ is true.

Induction: Rationale

Formally: $(P(1) \land \forall k \in \mathbb{N}P(k) \rightarrow P(k+1)) \rightarrow \forall n \in \mathbb{N}P(n)$

• Intuition: Iterative modus ponens: $P(k) \land (P(k) \rightarrow P(k+1)) \rightarrow P(k+1)$ Need a starting point (Base case)

Induction: Example 1

$$P(n): 1+2+\ldots+n = n(n+1)/2$$

• Inductive step: Assume P(n) is true. Show P(n+1) is true. Note:

$$1+2+\ldots+n+(n+1) = n(n+1)/2+(n+1)$$

= (n+1)(n+2)/2

So, by the principle of mathematical induction, $\forall n \in \mathbb{N}, P(n)$.

Induction: Example 2

$$P(n): 1^2 + 2^2 + \ldots + n^2 = n(n+1)(2n+1)/6$$

• Base case:
$$P(1)$$
.
LHS = 1. RHS = $1(1+1)(2+1)/6 = 1 = LHS$

Inductive step:
 Assume P(n) is true. Show P(n+1) is true.
 Note:

$$1^{2} + 2^{2} + \ldots + n^{2} + (n+1)^{2} = n(n+1)(2n+1)/6 + (n+1)^{2}$$

= (n+1)(n+2)(2n+3)/6

So, by the principle of mathematical induction, $\forall n \in \mathbb{N}, P(n)$.

Induction: Proving Inequalities

- $P(n): n < 4^{n}$
 - Base case: P(1).
 P(1) holds since 1 < 4.
 - Inductive step: Assume P(n) is true, show P(n + 1) is true, i.e., show that $n + 1 < 4^{n+1}$:

$$egin{array}{rcl} n+1 &<& 4^n+1\ &<& 4^n+4^n\ &<& 4.4^n\ &=& 4^{n+1} \end{array}$$

So, by the principle of mathematical induction, $\forall n \in \mathbb{N}, P(n)$.

Induction: More Examples

• Sum of odd integers

• $n^3 - n$ is divisible by 3

• Number of subsets of a finite set

Induction: Facts to Remember

• Base case does not have to be n = 1

• Most common mistakes are in not verifying that the base case holds

• Usually guessing the solution is done first

How can you guess a solution?

Depends on the problem.

- Try simple tricks: e.g. for sums with similar terms: *n* times the average or *n* times the maximum; for sums with fast increasing/decreasing terms, some multiple of the maximum term
- Often proving upper and lower bounds separately helps

• If nothing else works, make educated guesses

Strong Induction

Sometimes we need more than P(n) to prove P(n+1); in these cases STRONG induction is used. Formally:

 $[P(1) \land \forall k(P(1) \land \ldots \land P(k-1) \land P(k)) \to P(k+1))] \to \forall n P(n)$

Note: Strong Induction is:

• Equivalent to induction - use whichever is convenient

• Often useful for proving facts about algorithms

Strong Induction: Examples

- Fundamental Theorem of Arithmetic: every positive integer n, n > 1, can be expressed as the product of one or more prime numbers.
- every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Fallacies/caveats: "Proof" that all Canadians are of the same age! http:

//www.math.toronto.edu/mathnet/falseProofs/sameAge.html

A Graph Example

Claim: A tree with n nodes has exactly n - 1 edges

- Consider any node a in the tree, connected by edges to k ≥ 1 nodes, each of which is part of a tree. Remove the node and these k edges
- Let the size of the k trees be n_1, \ldots, n_k
- By the inductive hypothesis the total number of edges in these trees are n₁ 1 + ... + n_k 1 = n₁ + ... + n_k k
- Now add the removed node and the k edges. So the number of nodes n = n₁ + ... + n_k + 1 and the number of edges is n₁ + ... + n_k k + k = n 1

Proofs vs Counterexamples

To prove quantified statements of the form

- ∀xP(x): an example (or 10) x for which P(x) is true is/are NOT enough; a proof is needed
- $\exists x P(x)$: an example x for which P(x) is true is enough.

To DISPROVE quantified statements of the form

- ∀xP(x): a COUNTERexample x for which P(x) is false is enough
- ∃xP(x): an example x for which P(x) is false is NOT enough; a proof is needed

Intuition:

Disproving $(\forall x)P(x)$ means proving $\neg(\forall x)P(x) \equiv (\exists x)\neg P(x)$

Proofs vs Counterexamples - 2

If you try to prove universally quantified statements of the form $\forall x P(x)$ with an example

• You will likely see a comment "proof by example!" on your answer, and

• get little or no credit