EECS 2001A : Introduction to the Theory of Computation

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/2001
Also on Moodle

Proofs

- What is a proof?
- Does a proof need mathematical symbols?
- What makes a proof incorrect?
- How does one come up with a proof?

Proof techniques

- Direct Proofs
- Proof by cases
- Proof by contrapositive
- Proof by contradiction
- Proof by induction
- Others ...

Direct Proofs: Example

Proposition: Every prime number greater than 2 can be written as the difference of two squares, i.e. $a^{2}-b^{2}$.

- Question: where do we start?
- We know how $a^{2}-b^{2}$ factors. Let us start there.
- $a^{2}-b^{2}=(a+b)(a-b)$. We have to assume $a>b$ because $a^{2}-b^{2}$ must be positive. A prime $p>2$ only factors as $p * 1$.
- Equating factors, $a-b=1, a+b=p$. Solving, $a=\frac{p+1}{2}, b=\frac{p-1}{2}$. Since all primes $p>2$ are odd, a, b are integers.

Proof by Cases

Prove: If n is an integer, then $\frac{n(n+1)}{2}$ is an integer
Case 1: n is even. or $n=2 a$, for some integer a So $n(n+1) / 2=2 a *(n+1) / 2=a *(n+1)$, which is an integer.

Case 2: n is odd. So $n+1$ is even, or $n+1=2 a$, for an integer a So $n(n+1) / 2=n * 2 a / 2=n * a$, which is an integer.

Alternative argument: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$. The sum of the first n integers must be an integer itself.

Proof by Cases: Caution

What is being proved must be true in ALL cases, not some!

Proof by contrapositive

Logical Basis: Any implication $p \rightarrow q$ is logically equivalent to its contrapositive $\neg q \rightarrow \neg p$

Claim: If $\sqrt{p q} \neq(p+q) / 2$, then $p \neq q$

- Direct proof involves some algebraic manipulation
- Contrapositive: If $p=q$, then $\sqrt{p q}=(p+q) / 2$.

Easy: Assuming $p=q$, we see that
$\sqrt{p q}=\sqrt{p p}=\sqrt{p^{2}}=p=(p+p) / 2=(p+q) / 2$.
Exercise: prove that for all $a \in \mathbb{Z}$, if a^{2} is even, then a is even

Proof by contradiction

Claim: $\sqrt{2}$ is irrational
Proof: Suppose $\sqrt{2}$ is rational. Then $\sqrt{2}=p / q, p, q \in \mathbb{Z}, q \neq 0$, such that p, q have no common factors.
Squaring and transposing,
$p^{2}=2 q^{2}$ (so p^{2} is an even number)
So, p is even (previous slide)
Or $p=2 x$ for some integer x
So $4 x^{2}=2 q^{2}$ or $q^{2}=2 x^{2}$
So, q is even (a previous slide)
So, p, q are both even i.e., they have a common factor of 2 .
CONTRADICTION.
So $\sqrt{2}$ is NOT rational.

Proofs by Contradiction: Rationale

- In general, start with an assumption that statement A is true. Then, using standard inference procedures infer that A is false. This is the contradiction.
- This A may or not be what you are trying to prove (e.g. in the example, the contradiction was on the fact that the numerator and denominator had no common factors)
- Recall: for any proposition $p, p \wedge \neg p$ must be false.

More Complex Proof Techniques

Proof by using special results, e.g.,

- Using the Pigeonhole Principle
- Proof by Induction

Pigeonhole Principle

https://www.ethz.ch/en/news-and-events/eth-news/news/2016/05/creative-proofs-with-pigeons-and-boxes.html
Two statements:

- Pigeonhole Principle: If $n+1$ balls are distributed among n bins then at least one bin has more than 1 ball
- Generalized Pigeonhole Principle: If n balls are distributed among k bins then at least one bin has at least $\lceil n / k\rceil$ balls

Lots of interesting (and difficult) problems!

Examples

Pigeonhole Principle

- In any group of 367 people, at least 2 people must share a birthday
- In any group of 27 English words, at least 2 must start with the same letter
- In a class of 22 people, at least 2 must get the same score on a test out of 20 , assuming all scores are integers
Generalized Pigeonhole Principle
- If there are 16 people and 5 possible grades, 4 people must have the same grade.
- There are 50 baskets of apples. Each basket contains no more than 24 apples. So there are at least 3 baskets containing the same number of apples.

Proofs by Induction

Mathematical Induction:

- Very simple
- Very powerful proof technique
- "Guess and verify" strategy

Induction: Steps

Hypothesis: $P(n)$ is true for all $n \in \mathbb{N}$

- Base case/basis step (starting value): Show $P(1)$ is true.
- Inductive step:

Show that $\forall k \in \mathbb{N}(P(k) \rightarrow P(k+1))$ is true.

Induction: Rationale

Formally: $(P(1) \wedge \forall k \in \mathbb{N} P(k) \rightarrow P(k+1)) \rightarrow \forall n \in \mathbb{N} P(n)$

- Intuition: Iterative modus ponens:

$$
P(k) \wedge(P(k) \rightarrow P(k+1)) \rightarrow P(k+1)
$$

Need a starting point (Base case)

Induction: Example 1

$P(n): 1+2+\ldots+n=n(n+1) / 2$

- Base case: $P(1)$.
$\mathrm{LHS}=1 . \mathrm{RHS}=1(1+1) / 2=\mathrm{LHS}$
- Inductive step:

Assume $P(n)$ is true. Show $P(n+1)$ is true.
Note:

$$
\begin{aligned}
1+2+\ldots+n+(n+1) & =n(n+1) / 2+(n+1) \\
& =(n+1)(n+2) / 2
\end{aligned}
$$

So, by the principle of mathematical induction, $\forall n \in \mathbb{N}, P(n)$.

Induction: Example 2

$P(n): 1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6$

- Base case: $P(1)$.
$\mathrm{LHS}=1 . \operatorname{RHS}=1(1+1)(2+1) / 6=1=\mathrm{LHS}$
- Inductive step:

Assume $P(n)$ is true. Show $P(n+1)$ is true. Note:

$$
\begin{aligned}
1^{2}+2^{2}+\ldots+n^{2}+(n+1)^{2} & =n(n+1)(2 n+1) / 6+(n+1)^{2} \\
& =(n+1)(n+2)(2 n+3) / 6
\end{aligned}
$$

So, by the principle of mathematical induction, $\forall n \in \mathbb{N}, P(n)$.

Induction: Proving Inequalities

$P(n): n<4^{n}$

- Base case: $P(1)$.
$P(1)$ holds since $1<4$.
- Inductive step:

Assume $P(n)$ is true, show $P(n+1)$ is true, i.e., show that $n+1<4^{n+1}$:

$$
\begin{aligned}
n+1 & <4^{n}+1 \\
& <4^{n}+4^{n} \\
& <4^{n} \\
& =4^{n+1}
\end{aligned}
$$

So, by the principle of mathematical induction, $\forall n \in \mathbb{N}, P(n)$.

Induction: More Examples

- Sum of odd integers
- $n^{3}-n$ is divisible by 3
- Number of subsets of a finite set

Induction: Facts to Remember

- Base case does not have to be $n=1$
- Most common mistakes are in not verifying that the base case holds
- Usually guessing the solution is done first

How can you guess a solution?

Depends on the problem.

- Try simple tricks: e.g. for sums with similar terms: n times the average or n times the maximum; for sums with fast increasing/decreasing terms, some multiple of the maximum term
- Often proving upper and lower bounds separately helps
- If nothing else works, make educated guesses

Strong Induction

Sometimes we need more than $P(n)$ to prove $P(n+1)$; in these cases STRONG induction is used.
Formally:

$$
[P(1) \wedge \forall k(P(1) \wedge \ldots \wedge P(k-1) \wedge P(k)) \rightarrow P(k+1))] \rightarrow \forall n P(n)
$$

Note: Strong Induction is:

- Equivalent to induction - use whichever is convenient
- Often useful for proving facts about algorithms

Strong Induction: Examples

- Fundamental Theorem of Arithmetic: every positive integer n, $n>1$, can be expressed as the product of one or more prime numbers.
- every amount of postage of 12 cents or more can be formed using just 4 -cent and 5-cent stamps.

Fallacies/caveats: "Proof" that all Canadians are of the same age! http:
//www.math.toronto.edu/mathnet/falseProofs/sameAge.html

A Graph Example

Claim: A tree with n nodes has exactly $n-1$ edges

- Consider any node a in the tree, connected by edges to $k \geq 1$ nodes, each of which is part of a tree. Remove the node and these k edges
- Let the size of the k trees be n_{1}, \ldots, n_{k}
- By the inductive hypothesis the total number of edges in these trees are $n_{1}-1+\ldots+n_{k}-1=n_{1}+\ldots+n_{k}-k$
- Now add the removed node and the k edges. So the number of nodes $n=n_{1}+\ldots+n_{k}+1$ and the number of edges is $n_{1}+\ldots+n_{k}-k+k=n-1$

Proofs vs Counterexamples

To prove quantified statements of the form

- $\forall x P(x)$: an example (or 10) x for which $P(x)$ is true is/are NOT enough; a proof is needed
- $\exists x P(x)$: an example x for which $P(x)$ is true is enough.

To DISPROVE quantified statements of the form

- $\forall x P(x)$: a COUNTERexample x for which $P(x)$ is false is enough
- $\exists x P(x)$: an example x for which $P(x)$ is false is NOT enough; a proof is needed
Intuition:
Disproving $(\forall x) P(x)$ means proving $\neg(\forall x) P(x) \equiv(\exists x) \neg P(x)$

Proofs vs Counterexamples - 2

If you try to prove universally quantified statements of the form $\forall x P(x)$ with an example

- You will likely see a comment "proof by example!" on your answer, and
- get little or no credit

