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Proofs

Proofs

What is a proof?

Does a proof need mathematical symbols?

What makes a proof incorrect?

How does one come up with a proof?
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Basic proof techniques and examples

Proof techniques

Direct Proofs

Proof by cases

Proof by contrapositive

Proof by contradiction

Proof by induction

Others ...
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Basic proof techniques and examples Direct Proofs

Direct Proofs: Example

Proposition: Every prime number greater than 2 can be written as
the difference of two squares, i.e. a2 − b2.

Question: where do we start?

We know how a2 − b2 factors. Let us start there.

a2 − b2 = (a + b)(a − b). We have to assume a > b because
a2 − b2 must be positive. A prime p > 2 only factors as p ∗ 1.

Equating factors, a − b = 1, a + b = p. Solving,
a = p+1

2
, b = p−1

2
. Since all primes p > 2 are odd, a, b are

integers.
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Basic proof techniques and examples Proof by Cases

Proof by Cases

Prove: If n is an integer, then n(n+1)
2

is an integer

Case 1: n is even. or n = 2a, for some integer a
So n(n + 1)/2 = 2a ∗ (n + 1)/2 = a ∗ (n + 1), which is
an integer.

Case 2: n is odd. So n + 1 is even, or n + 1 = 2a, for an integer
a So n(n + 1)/2 = n ∗ 2a/2 = n ∗ a, which is an integer.

Alternative argument:
∑n

i=1 i = n(n+1)
2

. The sum of the first n
integers must be an integer itself.
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Basic proof techniques and examples Proof by Cases

Proof by Cases: Caution

What is being proved must be true in ALL cases, not some!
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Basic proof techniques and examples Proof by Contrapositive

Proof by contrapositive

Logical Basis: Any implication p → q is logically equivalent to its
contrapositive ¬q → ¬p

Claim: If
√
pq 6= (p + q)/2, then p 6= q

Direct proof involves some algebraic manipulation

Contrapositive: If p = q, then
√
pq = (p + q)/2.

Easy: Assuming p = q, we see that√
pq =

√
pp =

√
p2 = p = (p + p)/2 = (p + q)/2.

Exercise: prove that for all a ∈ Z, if a2 is even, then a is even
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Basic proof techniques and examples Proof by Contradiction

Proof by contradiction

Claim:
√

2 is irrational
Proof: Suppose

√
2 is rational. Then

√
2 = p/q, p, q ∈ Z, q 6= 0,

such that p, q have no common factors.
Squaring and transposing,
p2 = 2q2 (so p2 is an even number)
So, p is even (previous slide)
Or p = 2x for some integer x
So 4x2 = 2q2 or q2 = 2x2

So, q is even (a previous slide)
So, p, q are both even i.e., they have a common factor of 2.
CONTRADICTION.
So
√

2 is NOT rational.
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Basic proof techniques and examples Proof by Contradiction

Proofs by Contradiction: Rationale

In general, start with an assumption that statement A is true.
Then, using standard inference procedures infer that A is false.
This is the contradiction.

This A may or not be what you are trying to prove (e.g. in the
example, the contradiction was on the fact that the numerator
and denominator had no common factors)

Recall: for any proposition p, p ∧ ¬p must be false.
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More complex proof techniques and examples

More Complex Proof Techniques

Proof by using special results, e.g.,

Using the Pigeonhole Principle

Proof by Induction
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More complex proof techniques and examples Pigeonhole Principle

Pigeonhole Principle

https://www.ethz.ch/en/news-and-events/eth-news/news/2016/05/creative-proofs-with-pigeons-and-boxes.html

Two statements:

Pigeonhole Principle: If n + 1 balls are distributed among n bins
then at least one bin has more than 1 ball

Generalized Pigeonhole Principle: If n balls are distributed
among k bins then at least one bin has at least dn/ke balls

Lots of interesting (and difficult) problems!
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More complex proof techniques and examples Pigeonhole Principle

Examples

Pigeonhole Principle

In any group of 367 people, at least 2 people must share a
birthday

In any group of 27 English words, at least 2 must start with the
same letter

In a class of 22 people, at least 2 must get the same score on a
test out of 20, assuming all scores are integers

Generalized Pigeonhole Principle

If there are 16 people and 5 possible grades, 4 people must have
the same grade.

There are 50 baskets of apples. Each basket contains no more
than 24 apples. So there are at least 3 baskets containing the
same number of apples.
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More complex proof techniques and examples Proof by Induction

Proofs by Induction

Mathematical Induction:

Very simple

Very powerful proof technique

“Guess and verify” strategy
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More complex proof techniques and examples Proof by Induction

Induction: Steps

Hypothesis: P(n) is true for all n ∈ N
Base case/basis step (starting value):
Show P(1) is true.

Inductive step:
Show that ∀k ∈ N(P(k)→ P(k + 1)) is true.
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More complex proof techniques and examples Proof by Induction

Induction: Rationale

Formally: (P(1) ∧ ∀k ∈ NP(k)→ P(k + 1))→ ∀n ∈ NP(n)

Intuition: Iterative modus ponens:
P(k) ∧ (P(k)→ P(k + 1))→ P(k + 1)
Need a starting point (Base case)
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More complex proof techniques and examples Proof by Induction

Induction: Example 1

P(n) : 1 + 2 + . . . + n = n(n + 1)/2

Base case: P(1).
LHS = 1. RHS = 1(1 + 1)/2 = LHS

Inductive step:
Assume P(n) is true. Show P(n + 1) is true.
Note:

1 + 2 + . . . + n + (n + 1) = n(n + 1)/2 + (n + 1)

= (n + 1)(n + 2)/2

So, by the principle of mathematical induction, ∀n ∈ N,P(n).
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More complex proof techniques and examples Proof by Induction

Induction: Example 2

P(n) : 12 + 22 + . . . + n2 = n(n + 1)(2n + 1)/6

Base case: P(1).
LHS = 1. RHS = 1(1 + 1)(2 + 1)/6 = 1 = LHS

Inductive step:
Assume P(n) is true. Show P(n + 1) is true.
Note:

12 + 22 + . . . + n2 + (n + 1)2 = n(n + 1)(2n + 1)/6 + (n + 1)2

= (n + 1)(n + 2)(2n + 3)/6

So, by the principle of mathematical induction, ∀n ∈ N,P(n).
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More complex proof techniques and examples Proof by Induction

Induction: Proving Inequalities

P(n) : n < 4n

Base case: P(1).
P(1) holds since 1 < 4.

Inductive step:
Assume P(n) is true, show P(n + 1) is true, i.e.,
show that n + 1 < 4n+1:

n + 1 < 4n + 1

< 4n + 4n

< 4.4n

= 4n+1

So, by the principle of mathematical induction, ∀n ∈ N,P(n).
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More complex proof techniques and examples Proof by Induction

Induction: More Examples

Sum of odd integers

n3 − n is divisible by 3

Number of subsets of a finite set
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More complex proof techniques and examples Proof by Induction

Induction: Facts to Remember

Base case does not have to be n = 1

Most common mistakes are in not verifying that the base case
holds

Usually guessing the solution is done first
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More complex proof techniques and examples Proof by Induction

How can you guess a solution?

Depends on the problem.

Try simple tricks: e.g. for sums with similar terms: n times the
average or n times the maximum; for sums with fast
increasing/decreasing terms, some multiple of the maximum
term

Often proving upper and lower bounds separately helps

If nothing else works, make educated guesses
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More complex proof techniques and examples Proof by Induction

Strong Induction

Sometimes we need more than P(n) to prove P(n + 1); in these
cases STRONG induction is used.
Formally:

[P(1) ∧ ∀k(P(1) ∧ . . . ∧ P(k − 1) ∧ P(k))→ P(k + 1))]→ ∀nP(n)

Note: Strong Induction is:

Equivalent to induction – use whichever is convenient

Often useful for proving facts about algorithms
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More complex proof techniques and examples Proof by Induction

Strong Induction: Examples

Fundamental Theorem of Arithmetic: every positive integer n,
n > 1, can be expressed as the product of one or more prime
numbers.

every amount of postage of 12 cents or more can be formed
using just 4-cent and 5-cent stamps.

Fallacies/caveats: “Proof” that all Canadians are of the same age!
http:

//www.math.toronto.edu/mathnet/falseProofs/sameAge.html
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More complex proof techniques and examples Proof by Induction

A Graph Example

Claim: A tree with n nodes has exactly n − 1 edges

Consider any node a in the tree, connected by edges to k ≥ 1
nodes, each of which is part of a tree. Remove the node and
these k edges

Let the size of the k trees be n1, . . . , nk

By the inductive hypothesis the total number of edges in these
trees are n1 − 1 + . . . + nk − 1 = n1 + . . . + nk − k

Now add the removed node and the k edges. So the number of
nodes n = n1 + . . . + nk + 1 and the number of edges is
n1 + . . . + nk − k + k = n − 1
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Proofs vs Counterexamples

Proofs vs Counterexamples

To prove quantified statements of the form

∀xP(x): an example (or 10) x for which P(x) is true is/are
NOT enough; a proof is needed

∃xP(x): an example x for which P(x) is true is enough.

To DISPROVE quantified statements of the form

∀xP(x): a COUNTERexample x for which P(x) is false is
enough

∃xP(x): an example x for which P(x) is false is NOT enough; a
proof is needed

Intuition:
Disproving (∀x)P(x) means proving ¬(∀x)P(x) ≡ (∃x)¬P(x)
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Proofs vs Counterexamples

Proofs vs Counterexamples - 2

If you try to prove universally quantified statements of the form
∀xP(x) with an example

You will likely see a comment “proof by example!” on your
answer, and

get little or no credit
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